METADATA 143

specifies some of the metadata, namely, the name of the relations, the fields or
attributes of each relation, the domain of each attribute, etc.

Common forms of metadata associated with text include the author, the
date of publication, the source of the publication, the document length (in pages,
words, bytes, etc.), and the document genre (book, article, memo, etc.). For ex-
ample, the Dublin Core Metadata Element Set [807] proposes 15 fields to describe
a document. Following Marchionini [542], we refer to this kind of information as
Descriptive Metadata, metadata that is external to the meaning of the document,
and pertains more to how it was created. Another type of metadata character-
izes the subject matter that can be found within the document’s contents. We
will refer to this as Semantic Metadata. Semantic Metadata is associated with
a wide number of documents and its availability is increasing. All books pub-
lished within the USA are assigned Library of Congress subject codes, and many
journals require author-assigned key terms that are selected from a closed vocab-
ulary of relevant terms. For example, biomedical articles that appear within the
MEDLINE (see Chapter 3) system are assigned topical metadata pertaining to
disease, anatomy, pharmaceuticals, and so on. To standardize semantic terms,
many areas use specific ontologies, which are hierarchical taxonomies of terms
describing certain knowledge topics.

An important metadata format is the Machine Readable Cataloging Record
(MARC) which is the most used format for library records. MARC has several
fields for the different attributes of a bibliographic entry such as title, author, etc.
Specific uses of MARC are given in Chapter 14. In the USA, a particular version
of MARC is used: USMARC, which is an implementation of ANSI/NISO Z39.2,
the American National Standard for Bibliographic Information Interchange. The
USMARC format documents contain the definitions and content for the fields
that have to be used in records structured according to Z39.2. This standard is
maintained by the Library of Congress of the USA.

With the increase of data in the Web, there are many initiatives to add
metadata information to Web documents. In the Web, metadata can be used for
many purposes. Some of them are cataloging (BibTeX is a popular format for this
case), content rating (for example, to protect children from reading some type of
documents), intellectual property rights, digital signatures (for authentication),
privacy levels (who should and who should not have access to a document),
applications to electronic commerce, etc. The new standard for Web metadata
is the Resource Description Framework (RDF), which provides interoperability
between applications. This framework allows the description of Web resources
to facilitate automated processing of the information. It does not assume any
particular application or semantic domain. It consists of a description of nodes
and attached attribute/value pairs. Nodes can be any Web resource, that is,
any Uniform Resource Identifier (URI), which includes the Uniform Resource
Locator (URL). Attributes are properties of nodes, and their values are text
strings or other nodes (Web resources or metadata instances). To describe the
semantics, values from, for example, the Dublin Core library metadata URL can
be used. Other predefined vocabularies for authoring metadata are expected, in
particular for content rating and for digital signatures. In addition, currently,

144 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

there are many Web projects on ontologies for different application domains (see
also Chapters 13 and 15). Metadata is also useful for metadescriptions of non-
textual objects. For example, a set of keywords that describe an image. These
keywords can later be used to search for the image using classic text information
retrieval techniques (on the metadescriptions).

6.3 Text

With the advent of the computer, it was necessary to code text in binary digits.
The first coding schemes were EBCDIC and ASCII, which used seven bits to
code each possible symbol. Later, ASCII was standardized to eight bits (ISO-
Latin), to accommodate several languages, including accents and other diacritical
marks. Nevertheless, ASCII is not suitable for oriental languages such as Chinese
or Japanese Kanji, where each symbol might represent a concept and therefore
thousands of them exist. For this case, a 16-bit code exists called Unicode (IsO
10616) [783].

In this section we cover different characteristics of text. First, the possible
formats of text, ASCII being the simplest format. Second, how the information
content of text can be measured, followed by different models for it. Finally, we
mention briefly how we can measure similarity between strings or pieces of text.

6.3.1 Formats

There is no single format for a text document, and an IR system should be
able to retrieve information from many of them. In the past, IR systems would
convert a document to an internal format. However, that has many disadvan-
tages, because the original application related to the document is not useful any
more. On top of that, we cannot change the contents of a document. Current
IR systems have filters that can handle most popular documents, in particular
those of word processors with some binary syntax such as Word, WordPerfect
or FrameMaker. Even then, good filters might not be possible if the format is
preprietary and its details are not public. This is not the case for full ASCII
syntax, as in TeX documents. Although documents can be in a binary format
(for example, parts of a Word document), documents that are represented in
human-readable ASCII form imply more portability and are easier to modify
(for example, they can be edited with different applications).

Other text formats were developed for document interchange. Among these
we should mention the Rich Text Format (RTF), which is used by word proces-
sors and has ASCII syntax. Other important formats were developed for display-
ing or printing documents. The most popular ones are the Portable Document
Format (PDF) and Postscript (which is & powerful programming language for
drawing). Other interchange formats are used to encode electronic mail, for ex-
ample MIME (Multipurpose Internet Mail Exchange). MIME supports multiple
character sets, multiple languages, and multiple media.

On top of these formats, nowadays many files are compressed. Text com-
pression is treated in detail in Chapter 7, but here we comment on the most

TEXT 145

popular compression software and associated formats. These include Compress
(Unix), ARJ (PCs), and ZIP (for example gzip in Unix and Winzip in Win-
dows). Other tools allow us to convert binary files, in particular compressed
text, to ASCII text such that it can be transmitted through a communication
line using only seven bits. Examples of these tools are uuencode/uudecode and
binhex.

6.3.2 Information Theory

Written text has a certain semantics and is a way to communicate information.
Although it is difficult to formally capture how much information is there in
a given text, the distribution of symbols is related to it. For example, a text
where one symbol appears almost all the time does not convey much information.
Information theory defines a special concept, entropy, to capture information
content (or equivalently, information uncertainty). If the alphabet has o symbols,
each one appearing with probability p; (probability here is defined as the symbol
frequency over the total number of symbols) in a text, the entropy of this text
is defined as

E=-) pilog,p

1=1

In this formula the o symbals of the alphabet are coded in binary, so the entropy
is measured in bits. As an example. for o = 2. the entropy is 1 if both symbols
appear the same number of times or 0 if only one symbol appears. We say
that the amount of information in a text can be quantified by its entropy. The
definition of entropy depends on the probabilities (frequencies) of each symbol.
To obtain those probabilities we need a text medel . So we say that the amount
of information in a text is measured with regard to the text model. This concept
is also important. for example, in text compression, where the entropy is a limit
on how much the text can be compressed, depending on the text model.
In our case we are interested in natural language, as we now discuss.

6.3.3 Modeling Natural Language

Text is coraposed of symbols from a finite alphabet. We can divide the symbols
in two disjoint subsets: symbols that separate words and symbols that belong
to words. It is well known that symbols are not uniformly distributed. If we
consider just letters (a to z). we observe that vowels are usually more frequent
than most consonants. For example, in English, the letter ‘¢’ has t+he highest
frequency. A simple model to generate text is the binomial model. In it, each
symbol is generated with a certain prebability. However, natural language has a
dependency on previous symbols. For example, in English, a letter ‘f” cannot ap-
pear after a letter ‘c’ and vowels or certain consonants have a higher probability

146 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

of occurring. Therefore, the probability of a symbol depends on previous sym-
bols. We can use a finite-context or Markovian model to reflect this dependency.
The model can consider one, two, or more letters to generate the next symbol.
If we use k letters, we say that it is a k-order model (so the binomial model is
considered a 0-order model). We can 1se these models taking words as symbols.
For example, text generated by a 5-order model using the distribution of words
in the Bible might make sense (that is, it can be grammatically correct), but will
be different from the original. More complex models include finite-state models
(which define regular languages), and grammar models (which define context free
and other languages). However, finding the right grammar for natural language
is still a difficult open problem.

The next issue is how the different words are distributed inside each docu-
ment. An approximate model is Zipf’s Law [847, 310], which attempts to capture
the distribution of the frequencies (that is, number of occurrences) of the words
in the text. The rule states that the frequency of the i-th most frequent word is
1/1° times that of the most frequent word. This implies that in a text of n words
with a vocabulary of V' words, the i-th most frequent word appears n /(i°Hy(8))
times, where Hy (6) is the harmonic number of order 8 of V, defined as

14 1
Hy(0)=3 -
Jj=1 J

so that the sum of all frequencies is n. The left side of Figure 6.2 illustrates the
distribution of frequencies considering that the words are arranged in decreasing
order of their frequencies. The value of § depends on the text. In the most simple
formulation, # = 1, and therefore Hy () = O(logn). However, this simplified
version is very inexact, and the case # > 1 (more precisely, between 1.5 and 2.0)
fits better the real data [26]. This case is very different, since the distribution
is much more skewed, and Hy () = O(1). Experimental data suggests that a
better model is k/(c + i)? where c is an additional parameter and k is such that
all frequencies add to n. This is called a Mandelbrot distribution (561].

Since the distribution of words is very skewed (that is, there are a few
hundred words which take up 50% of the text), words that are too frequent,
such as stopwords, can be disregarded. A stopword is a word which does not
carry meaning in natural language and therefore can be ignored (that is, made
not searchable), such as ‘a.’ ‘the,’ ‘by,’ etc. Fortunately the most frequent words
are stopwords and therefore, half of the words appearing in a text do not need
to be considered. This allows us, for instance, to significantly reduce the space
overhead of indices for natural language texts. For example, the most frequent
words in the TREC-2 collection (see Chapter 3 for details on this reference
collection and others) are ‘the,’ ‘of,” ‘and,’ ‘a,’ ‘to’ and ‘in’ (see also Chapter 7).

Another issue is the distribution of words in the documents of a collection.
A simple model is to consider that each word appears the same number of times
in every document. However, this is not true in practice. A better model is

TEXT 147

Words Text size

Figure 6.2 Distribution of sorted word frequencies (left) and size of the vocabulary
(right).

to consider a negative binomial distribution, which says that the fraction of
documents containing a word k times is

R = ()T e
where p and a are parameters that depend on the word and the document
collection. For example, for the Brown Corpus [276] and the word ‘said’, we
have p = 9.24 and a = 0.42 [171]. The latter reference gives other models
derived from a Poisson distribution.

The next issue is the number of distinct words in a document. This set of
words is referred to as the document vocabulary. To predict the growth of the
vocabulary size in natural language text, we use the so-called Heaps’ Law [352).
This is a very precise law which states that the vocabulary of a text of size n
words is of size V = Kn® = O(n?), where K and 3 depend on the particular
text. The right side of Figure 6.2 illustrates how the vocabulary size varies with
the text size. K is normally between 10 and 100, and § is a positive value less
than one. Some experiments [26, 42] on the TREC-2 collection show that the
most common values for 3 are between 0.4 and 0.6. Hence, the vocabulary of a
text grows sublinearly with the text size. in a proportion close to its square root.

Notice that the set of different words of a language is fixed by a constant
(for example, the number of different English words is finite). However, the limit
is so high that it is much more accurate to assume that the size of the vocabulary
is O(n?) instead of O(1), although the number should stabilize for huge enough
texts. On the other hand, many authors argue that the number keeps growing
anyway because of typing or spelling errors.

Heaps’ law also applies to collections of documents because, as the total text
size grows, the predictions of the model become more accurate. Furthermore,
this model is also valid for the World Wide Web (see Chapter 13).

The last issue is the average length of words. This relates the text size in

148 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

words with the text size in bytes (without accounting for punctuation and other
extra symbols). For example. in the different subcollections of the TREC-2 col-
lection. the average word length is verv close to 5 letters. and the range of varia-
tion of this average in each subcollection is small (from 4.8 to 5.3 letters). If we re-
move the stopwords, the average length of a word increases to a number between
6 and 7 (Jetters). If we take only the words of the vocabulary, the average length
is higher (about 8 or 9). This defines the total space needed for the vocabulary.

Heaps’ law imnplies that the length of the words in the vocabulary increases
logarithmically with the text size and thus, that longer and longer words should
appear as the text grows. However, in practice, the average length of the words in
the overall text is constant because shorter words are common enough (e.g. stop-
words). This balance between short and long words. such that the average word
length remains constant, has been noticed many times in different contexts, and
can also be explained by a finite-state model in which: (a) the space character
has probability close to 0.2; (b) the space character cannot appear twice subse-
quently; and {c) there are 26 letters [561]. This simple model is consistent with
Zipf’s and Heaps' laws.

The models presented in this section are used in Chapters 8 and 13, in
particular Zipf's and Heaps’ laws.

6.3.4 Similarity Models

In this section we define notions of syntactic similarity between strings or doc-
uments. Similarity is measured by a distance function. For example, if we
have strings of the same length, we can define the distance between them as
the number of positions that have different characters. Then, the distance is
0 if they are equal. This is called the Hamming distance. A distance func-
tion should also be symmetric (that is. the order of the arguments does not
matter) and should satisfy the triangle inequality (that is, distance(a,c) <
distance(a, b) + distance(b, c)).

: An important distance over strings is the edit or Levenshtein distance men-
tioned earlier. The edit distance is defined as the minimumm number of charac-
ters, insertions, deletions, and substitutions that we need to perform in any of
the strings to make them equal. For instance, the edit distance between ‘color’
and ‘colour’ is one. while the edit distance between ‘'survey’ and ‘surgery’ is
two. The edit distance is considered to be superior for modeling syntactic errors
than other more complex methods such as the Soundex system. which is based
on phouetics [595]. Extensions to the concept of edit distance include different
weights for each operation. adding transpositions, etc.

There are other measures. For example, assume that we are comparing
two given strings and the only operation allowed is deletion of characters. Then,
after all non-common characters have been deleted. the remaining sequence of
characters (not necessarily contiguous in the original string. but in the same
order) is the longest common subsequence (LCS) of both strings. For example,
the LCS of ‘survey’ and ‘surgery’ is ‘surey.’

MARKUP LANGUAGES 149

Similarity can be extended to documents. For example, we can consider
lines as single symbols and compute the longest common sequence of lines be-
tween two files. This is the measure used by the diff command in Unix-like
operating systems. The main problem with this approach is that it is very time
consuming and does not consider lines that are similar. The latter drawback
can be fixed by taking a weighted edit distance between lines or by comput-
ing the LCS over all the characters. Other solutions include extracting fin-
gerprints (any piece of text that in some sense characterizes it) for the docu-
ments and comparing them, or finding large repeated pieces. There are also
visual tools to see document similarity. For example, Dotplot draws a rectan-
gular map where both coordinates are file lines and the entry for each coordi-
nate is a gray pixel that depends on the edit distance between the associated
lines.

6.4 Markup Languages

Markup is defined as extra textual syntax that can be used to describe for-
matting actions, structure information, text semantics, attributes, etc. For
example, the formatting commands of TeX (a popular text formatting soft-
ware) could be considered markup. However, formal markup languages
are much more structured. The marks are called tags, and usually, to
avoid ambiguity, there js an initial and ending tag surrounding the marked
text. The standard metalanguage for markup is SGML. as already men-
tioned. An important subset of SGML is XML (eXtensible Markup Lan-
guage), the new metalanguage for the Web. The most popular markup lan-
guage used for the Web, HTML (HyperText Markup Language), is an in-
stance of SGMIL. All these Jlanguages and examples of them are described be-
low.

6.4.1 SGML

SGML stands for Standard Generalized Markup Language (ISO 8879) and
is a metalanguage for tagging text developed by a group led by Goldfarb
[303] based on earlier work done at IBM. That is, SGML provides the rules
for defining a markup language based on tags. Each instance of SGML in-
cludes a description of the document structure called a document type defi-
nition. Hence, an SGML document is defined by: (1) a description of the
structure of the document and (2) the text itself marked with tags which de-
scribe the structure. We will explain later the syntax associated with the
tags.

The document type definition is used to describe and name the pieces that a
document is composed of and define how those pieces relate to each other. Part of
the definition can be specified by an SGML document type declaration (DTD).

150 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

Other parts, such as the semantics of elements and attributes, or applicati
conventions, cannot be expressed formally in SGML. Comments can be used,
however, to express them informally. This means that all of the rules for applying
SGML markup to documents are part of the definition, and those that can be
expressed in SGML syntax are represented in the DTD. The DTD does not define
the semantics (that is, the meaning, presentation, and behavior), or intended use,
of the tags. However, some semantic information can be included in comments
embedded in the DTD, while more complete information is usually present in
separate documentation. This additional documentation typically describes the
elements, or logical pieces of data, the attributes, and information about those
pieces of data. For example, two tags can have the same name but different
semantics in two different applications.

Tags are denoted by angle brackets (<tagname>). Tags are used to identify
the beginning and ending of pieces of the document, for example a quote in a
literary text. Ending tags are specified by adding a slash before the tag name
(e.g., </tagname>). For example, the tag </author> could be used to identify
the element ‘name of author,” which appears in italics and generates a link to a
biographic sketch. Tag attributes are specified at the beginning of the element,
inside the angle brackets and after the nametag using the syntax attname=value.

Figure 6.3 gives an example of a simple DTD and a document using it.
While we do not intend to discuss SGML syntax here, we give a brief description
of the example such that the reader can grasp the main ideas. Each ELEMENT
represents a tag denoted by its name. The two following characters indicate if
the starting and ending tags are compulsory (-) or optional (0). For example,
the ending tag for prolog is necessary while for sender it is not. Following
that, the inside portion of the content tag is specified using a regular expres-
sion style syntax where ‘.’ stands for concatenation, ‘|’ stands for logical or, ‘?’
stands for zero or one occurrence, ‘*' stands for zero or more occurrences, and
‘+’ stands for one or more occurrences of the preceding element. The content
tag can be composed of the combination of other tag contents, ASCII characters
(PCDATA), and binary data (NDATA), or EMPTY. The possible attributes of a
tag are given in an attribute list (ATTLIST) identified by the tag name, followed
by the name of each attribute, its type, and if it is required or not (otherwise,
the default value is given). An SGML document instance is associated with the
DTD so that the various tools working with the data know which are the correct
tags and how they are organized.

The document description generally does not specify how a document
should look, for example when it is printed on paper or displayed on a screen.
Because SGML separates coutent from format, we can create very good models
of data that have no mechanism for describing the format, hence, no standard
way to output the data in a formatted fashion. Therefore, output specifica-
tions, which are directions on how to format a document, are often added to
SGML documents. For this purpose, output specification standards such as
DSSSL (Document Style Semantic Specification Language) and FOSI (Format-
ted Output Specification Instance) were devised. Both of these standards define
mechanisms for associating style information with SGML document instances.

MARKUP LANGUAGES 151

<!--SGML DTD for electronic messages -->

<!ELEMENT e-mail - - (prolog, contents) >

<!ELEMENT prolog - - (sender, address+, subject?, Cc*) >
<!ELEMENT (sender | address | subject | Cc) - O (#PCDATA) >
<!ELEMENT contents - - (par | image | audio)+ >

<!ELEMENT par - 0 (ref | #PCDATA)+ >

<!ELEMENT ref - 0 EMPTY >

<!ELEMENT (image | audio) - - (#NDATA) >

<!'ATTLIST e-mail .
id ID #REQUIRED

date_sent DATE #REQUIRED

status (secret | public) public >
<!ATTLIST ref

id IDREF #REQUIRED >
<!'ATTLIST (image | audio)

id ID #REQUIRED >

<!--Example of use of previous DTD-->
<!DOCTYPE e-mail SYSTEM "e-mail.dtd">
<e-mail id=94108rby date_sent=02101998>
<prolog>
<sender> Pablo Neruda </sender>
<address> Federico Garcia Lorca </address>
<address> Ernest Hemingway </address>
<subject> Pictures of my house in Isla Negra
<Cc> Gabriel Garcia Marquez </Cc>
</prolog>
<contents>
<par>
As promised in my previous letter, I am sending two digital
pictures to show you my house and the splendid view of the
Pacific Ocean from my bedroom (photo <ref idref=F2>).
</par>
<image id=F1> "photol.gif" </image>
<image id=F2> "photo2.jpg" </image>
<par>
Regards from the South, Pablo.
</contents>
</e-mail>

Figure 6.3 DTD for structuring electronic mails and an example of its use.

They are the components of an SGML system used for defining, for instance,
that the data identified by a tag should be typeset in italics.

One important use of SGML is in the Text Encoding Initiative (TEI). The
TEI is a cooperative project that started in 1987 and includes several US asso-
ciations related to the humanities and linguistics. The main goal is to generate
guidelines for the preparation and interchange of electronic texts for scholarly

152 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

research, as well as for industry. In addition to the guidelines, TEl provides
several document formats through SGML DTDs. One of the most used formats
is TEI Lite. The TEI Lite DTD can be used stand-alone or together with the
full set of TEI DTD files.

6.4.2 HTML

HTML stands for HyperText Markup Language and is an instance of SGML.
HTML was created in 1992 and has evolved during the past vears, 4.0 being the
latest version. released as a recommendation at the end of 1997. Currently it is
being extended in many ways to solve its many limitations, for example. to be
able to write mathematical formulas. Most documents on the Web are stored
and transmitted in HTML. HTML is a simple language well suited for hvpertext,
multimedia, and the display of small and simple documents.

HTML is based on SGML, and although there is an HTML DTD (Docu-
ment Type Definition), most HTML instances do not explicitly make reference
to the DTD. The HTML tags follow all the SGML conventions and also include
formatting directives.

HTML documents can have other media embedded within them. such as
images or audio in different formats. HTML also has fields for metadata, which
can be used for different applications and purposes. If we also add programs (for
example, using Javascript) inside a page, some people call it dynamic HTML (or
DHTNML). This should not be confused with a Microsoft proposal (also called
dynamic HTML) of an Application Programming Interface (APT) for accessing
and manipulating HTML documents. Figure 6.4 gives an example of an HTML
document together with its output in a Web browser.

Becanse HTML does not fix the presentation style of a document, in
1997, Cascade Style Sheets {CSS) were introduced. CSS offer a power-
ful and manageable way for authors, artists, and typographers to create vi-
sual effects that improve the aesthetics of HTML pages in the Web. Style
sheets can be used one after another (called cascading) to define the pre-
sentation stvle for different elements of an HTML page. Style sheets sep-
arate information about presentation from document content, which in turn
simplifies Web site maintenance, promotes Web page accessibility, and makes
the Web faster. However. CSS support in current browsers is still mod-
est. Another disadvantage is that two style sheets do not have to be consis-
tent nor complete, so the stylistic result might not be good. in particular re-
garding color. CSS are supposed to halance the expectations of the author
and of the reader regarding presentation issues. Nevertheless. it is not clear
who or in which cases the author or the reader should define the presenta-
tion.

The evolution of HTML implies support for backward compatibility and
also for forward compatibility, because people should also be able to see new doc-
uments with old browsers. HTML 4.0 has been specified in three flavors: strict,
transitional, and frameset. Strict HTML only worries about non-presentational

MARKUP LANGUAGES

153

<html>

<head>

<title>HTML Example</title>

<meta name=rby content="Just an example">

</head>

<body>

<h1>HTML Example</h1>

<p>

<hr>

<p>

HTML has many <i>tags</i>, among them:

<1i> links to other pages
(a from anchor),

<1li> paragraphs (p), headings (hl, h2, etc), font types (b, i),

<1li> horizontal rules (hr), indented lists and items (ul, 1i),

 images (img), tables, forms, etc.

<p>

<hr>

<p>

This page is always under construction.

</body>

</html>

HTML Example

HTML has many tags, among them:

® links to other pages (a from anchor),

s paragraphs (p), headings (h1, h2, etc), font types (b, 1),

® horizontal rules (hr), indented lists and i items (ul 11),
. 1magec (img), tables, forms, etc.

@ This page is always under construction.

Figure 6.4 Example of an HTML document and how it is seen in a browser.

154 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

markup, leaving all the displaying information to CSS. Transitional HTML uses
all the presentational features for pages that should be read for old browsers that
do not understand CSS. Frameset HTML is used when you want to partition the
browser window in two or more frames. HTML 4.0 includes support for style
sheets, internationalization, frames, richer tables and forms, and accessibility
options for people with disabilities.

Typical HTML applications use a fixed small set of tags in conformance
with a single SGML specification. Fixing a small set of tags allows users to leave
the language specification out of the document and makes it much easier to build
applications, but this advantage comes at the cost of severely limiting HTML in
several important aspects. In particular, HTML does not:

e allow users to specify their own tags or attributes in order to parameterize
or otherwise semantically qualify their data;

e support the specification of nested structures needed to represent database
schemas or object-oriented hierarchies;

e support the kind of language specification that allows consuming applica-
tions to check data for structural validity on importation.

In contrast to HTML stands generic SGML. A generic SGML application is one
that supports SGML language specifications of arbitrary complexity and makes
possible the qualities of extensibility, structure, and validation missing in HTML.
SGML makes it possible to define your own formats for your own documents, to
handle large and complex documents, and to manage large information reposi-
tories. However, full SGML contains many optional features that are not needed
for Web applications and have proven to have a cost/benefit ratio unattractive
to current vendors of Web browsers. All these reasons led to the development of
XML, a simpler metalanguage that is described in the next section.

6.4.3 XML

XML stands for eXtensible Markup Language and is a simplified subset of SGML.
That is, XML is not a markup language, as HTML is, but a metalanguage that
is capable of containing markup languages in the same way as SGML. XML
allows a human-readable semantic markup, which is also machine-readable. As a
result, XML makes it easier to develop and deploy new specific markup, enabling
automatic authoring, parsing, and processing of networked data. In some ways,
XML allows one to do many things that today are done by Java scripts or other
program interfaces.

XML does not have many of the restrictions imposed by HTML but on
the other hand imposes a more rigid syntax on the markup, which becomes
important at processing time. In XML, ending tags cannot be omitted. Also,
tags for elements that do not have any content, like BR and IMG, are specially
marked by a slash before the closing angle bracket. XML also distinguishes upper

MARKUP LANGUAGES 155

<?XML VERSION="1.0" RMD="NONE" 7>
<e-mail id="94108rby" date_sent="02101998">
<prolog>
<sender> Pablo Neruda </sender>
<address> Federico Garcia Lorca </address>
<address> Ernest Hemingway </address>
<subject> Pictures of my house in Isla Negra
<Cc> Gabriel Garcia Marquez </Cc>
</prolog>
<contents>
<par>
As promised in my previous letter, I am sending two digital
pictures to show you my house and the splendid view of the
Pacific Ocean from my bedroom (photo <ref idref="F2"/>).
</par>
<image id="F1" ref="photol.gif" />
<image id="F2"> ref="photo2.jpg" />
(par>
Regards from the South, Pablo.
</par>
</contents>
</e-mail>

Figure 6.5 An XML document without a DTD analogous to the previous SGML
example.

and lower case, so img and IMG are different tags (this is not true in HTML). In
addition, all attribute values must be between quotes. This implies that parsing
XML without knowledge of the tags is easier. In particular, using a DTD is
optional. If there is no DTD, the tags are obtained while the parsing is done.
With respect to SGML, there are a few syntactic differences, and many more
restrictions. Listing all these differences is beyond the scope of this book, but
Figure 6.5 shows an example of a DTDless XML document based on the previous
electronic mail DTD given for SGML (see Figure 6.3). The RMD attribute stands
for Required Markup Declaration, which indicates whether a DTD must be used
or not (no DTD in this case). Other possible values are INTERNAL which means
that the DTD is inside the document or ALL (default value) which allows the use
of external sources for part or the whole DTD as in SGML. -

XML allows any user to define new tags. define more complex structures
(for example, unbounded nesting with the same rules of SGML) and has data
validation capabilities. As XML is very new, there is still some discussion of how
it will change or impact Internet applications. XML is a profile of SGML that
eliminates many of the difficulties of implementing things, so for the most part
it behaves just like SGML, as shown before. As mentioned, XML removes the
requirement for the existence of a DTD, which can be parsed directly from the
data. Removing the DTD places even more importance on the application docu-
mentation. This can also have a large impact on the functions that the software

156 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

provides. For example, it means that if an XML editor does not use a DTD, how
will it help the user to tag the documents consistently? These problems should
be resolved .in the near future. In the case of semantic ambiguity between tag
names, one goal is to have a namespace such that there is a convention for its
use.

The Extensible Style sheet Language (XSL) is the XML counterpart of Cas-
cading Style Sheets. XSL is designed to transform and style highly-structured,
data-rich documents written in XML. For example, with XSL it would be pos-
sible to automatically extract a table of contents from a document. The syntax
of XSL has been defined using XML. In addition to adding style to a document
XSL can be used to transform XML documents to HTML and CSS. This is
analogous to macros in a word processor.

Another extension to XML, defined using XML, is the Extensible Linking
Language (XLL). XLL defines different types of links, including external and
internal links. In particular, any element type can be the origin of a link and
outgoing links can be defined on documents that cannot be modified. The be-
havior of the links is also more generic. The object linked can be embedded in,
or replace the document. It is also possible to generate a new context without
changing the current application (for example, the object is displayed in a new
window).

Recent uses of XML include:

e Mathematical Markup Language (MathML): two sets of tags, one
for presentation of formulas and another for the meaning of mathematical
expressions.

e Synchronized Multimedia Integration Language (SMIL): a declara-
tive language for scheduling multimedia presentations in the Web, where
the position and activation time of different objects can be specified.

e Resource Description Format (already covered in section 6.2): meta-
data information for XML should be given using RDF.

The XML movement is one indication that a parseable, hierarchical object model
will play an increasingly major role in the evolution of HTML. The next gener-
ation of HTML should be based on a suite of XML tag sets to be used together
with mathematics, synchronized multimedia, and vector graphics (possibly using
the XMIL-based languages already mentioned). That is, the emphasis will be on
structuring and modeling data rather than on presentation and layout issues.

6.5 Multimedia

Multimedia usually stands for applications that handle different types of digital
data originating from distinct types of media. The most common types of media
in multimedia appliications are text, sound, images, and video (which is an ani-
mated sequence of images). The digital data originating from each of these four

MULTIMEDIA 157

types of media is quite distinct in volume, format, and processing requirements
(for instance. video and audio impose real time constraints on their processing).
As an immediate consequence, different types of formats are necessary for storing
each type of media.

In this section we cover formats and standard languages for multimedia
applications. In contrast with text formats, most formats for multimedia are
partially binary and hence can only be processed by a computer. Also, the
presentation style is almost completely defined, perhaps with the exception of
some spatial or temporal attributes.

6.5.1 Formats

Multimedia includes images, audio and video, as well as other binary data. We
now briefly survey the main formats used for all these data types. They are used
mainly in the Web and in digital libraries (see Chapters 13 and 15).

There are several formats for images. The simplest formats are direct
representations of a bit-mapped (or pixel-based) display such as XBM, BMP, or
PCX. However, those formats consume too much space. For example, a typical
computer screen which uses 256 colors for each pixel might require more than 1
Mb (one megabyte) in storage just for describing the content of a single screen
frame. In practice. images have a lot of redundancy and can be compressed
efficiently. So. most popular image formats incorporate compression such as
Compuserve’s Graphic Interchange Format (GIF). GIF is good for black and
white pictures, as well as pictures that have a small number of colors or gray
levels (say 256). To improve compression ratios for higher resolutions, lossy
compression was developed. That is. uncompressing a compressed image does not
give the original. This is done by the Joint Photographic Experts Group (JPEG)
format, which tries to eliminate parts of the image that have less impact on the
human eye. This format is parametric. in the sense that the loss can be tuned.

Another common image format is the Tagged Image File Format (TIFF).
This format is used to exchange documents between different applications and
different computer platforms. TIFF has fields for metadata and also supports
compression as well as different numbers of colors. Yet another format is True-
vision Targa image file (TGA). which is associated with video game boards.
There are many more image formats. many of them associated to particular ap-
plications ranging from fax (bi-level image formats such as JBIG) to fingerprints
(highly accurate and compressed formats such as WSQ) and satellite images
(large resolution and full-color images). In 1996 a new bit-mapped image format
was proposed for the Internet: Portable Network Graphics (PNG). This format
could be important in the future.

Audio must be digitalized first in order to be stored properly. The most
common formats for small pieces of digital audio are AU. MIDI, and WAVE.
MIDI is an standard format to interchange music between electronic instruments
and computers. For audio libraries other formats are used such as RealAudio or
CD formats.

158 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

There are several formats for animations or moving images (similar to video
or TV), but here we mention only the most popular ones. The main one is MPEG
(Moving Pictures Expert Group) which is related to JPEG. MPEG works by
coding the changes with respect to a base image which is given at fixed intervals.
In this way, MPEG profits from the temporal image redundancy that any video
has. Higher quality is achieved by using more frames and higher resolution.
MPEG specifies different compression levels, but usually not all the applications
support all of them. This format also includes the audio signal associated with
the video. Other video formats are AVI, FLI, and QuickTime. AVI may include
compression (CinePac), as well as QuickTime, which was developed by Apple.
As for MPEG, audio is also included.

6.5.2 Textual Images

A particular class of images that is very important in office systems, multimedia
retrieval, and digital libraries are images of documents that contain mainly typed
or fypeset text. These are called tertual images and are obtained by scanning
the documents, usually for archiving purposes — a procedure that also makes
the images (and their associated text) available to anyone through a computer
network. The fact that a large portion of a textual image is text can be used for
retrieval purposes and efficient compression.

Although we do not cover image compression in this chapter, we have seen
that the most popular image formats include some form of compression embed-
ded in them. In the case of textual images, further compression can be achieved
by extracting the different text symbols or marks from the image, building a
library of symbols for them, and representing each one (within the image) by
a position in the library. As many symbols are repeated, the compression ratio
is quite good. Although this technique is lossy (because the reconstructed im-
age is not equal to the original), the reconstructed image can be read without
problems. Additional information can be stored to reproduce the original image,
but for most applications this is not needed. If the image contains non-textual
information such as logos or signatures, which might be necessary to reproduce,
they may be extracted through a segmentation process, stored, and compressed
separately. When needed, the textual and non-textual parts of the image can be
combined and displayed together.

Regarding the retrieval of textual images, several alternatives are possible
as follows:

e At creation time or when added to the database, a set of keywords that
describe the image is associated with it (for example, metadata can be
used). Later, conventional text retrieval techniques can be applied to those
keywords. This alternative is valid for any multimedia object.

e Use OCR to extract the text of the image. The resultant ASCII text can
be used to extract keywords, as before, or as a full-text description of the

MULTIMEDIA 159

image. Depending on the document type, the OCR output could be rea-
sonably good or actually quite bad (consider the first page of a newspaper,
with several columns, different font types and sizes). In any case, many
typos are introduced and a usual keyword-based query might miss many
documents (in this case, an approximate search is better, but also slower)

e Use the symbols extracted from the images as basic units to combine image
retrieval techniques (see Chapter 12) with sequence retrieval techniques (see
Chapter 8). In this case, the query is transformed into a symbol sequence
that has to match approximately another symbol sequence in the com-
pressed image. This idea seems promising but has not been pursued yet.

6.5.3 Graphics and Virtual Reality

There are many formats proposed for three-dimensional graphics. Although this
topic is not fully relevant to information retrieval, we include some information
here for the sake of completeness. Our emphasis here is on the Web.

The Computer Graphics Metafile (CGM) standard (ISO 8632) is defined
for the open interchange of structured graphical objects and their associated
attributes. CGM specifies a two-dimensional data interchange standard which
allows graphical data to be stored and exchanged between graphics devices,
applications, and computer systems in a device-independent manner. It is a
structured format that can represent vector graphics (for example, polylines or
ellipses), raster graphics, and text. Although initially CGM was a vector graphics
format, it has been extended to include raster capabilities and provides a very
useful format for combined raster and vector images. A metafile is a collection of
elements. These elements may be the geometric components of the picture, such
as polyline or polygon; the appearance of these components; or how to interpret
a particular metafile or a particular picture. The CGM standard specifies which
elements are allowed to occur in which positions in a metafile.

The Virtual Reality Modeling Language (VRML, ISO/IEC 14772-1) is a
file format for describing interactive 3D objects and worlds and is a subset of
the Silicon Graphics Openlnventor file format. VRML is also intended to be a
universal interchange format for integrated 3D graphics and multimedia. VRML
may be used in a variety of application areas such as engineering and scientific
visualization, multimedia presentations, entertainment and educational titles,
Web pages, and shared virtual worlds. VRML has become the de facto standard
modeling language for the Web.

6.5.4 HyTime

The Hypermedia/Time-based Structuring Language (HyTime) is a standard
(ISO/IEC 10744) defined for multimedia documents markup. HyTime is an
SGML architecture that specifies the generic hypermedia structure of documents.

160 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

Following the guiding principle of SGML, HyTime-defined structure is indepen-

dent of any presentation of the encoded document. As an architecture, HyTime

allows DTDs to be written for individual document models that use HyTime

constructs, specifying how these document sets tailor the composition of these

constructs for their particular representational needs. The standard also provides

several metaDTDs, facilitating the design of new multimedia markup languages.
The hypermedia concepts directly represented by HyTime include

e complex locating of document objects,
¢ relationships (hyperlinks) between document objects, and

e numeric, measured associations between document objects.

The HyTime architecture has three parts: the base linking and addressing
architecture, the scheduling architecture (derived from the base architecture),
and the rendition architecture (which is an application of the scheduling archi-
tecture). The base architecture addresses the syntax and semantics of hyper-
links. For most simple hypermedia presentations, this should be enough. The
scheduling module of HyTime defines the abstract representation of arbitrarily
complex hypermedia structures, including music and interactive presentations.
Its basic mechanism is a simple one: the sequencing of object containers along
axes measured in temporal or spatial units. The rendition module is essentially
an application of the scheduling architecture that defines a general mechanism
for defining the creation of new schedules from existing schedules by applying
special ‘rendition rules’ of different types.

HyTime does not directly specify graphical interfaces, user navigation, user
interaction, or the placement of media on time lines and screen displays. These
aspects of document processing are rendered from the HyTime constructs in a
manner specified by mechanisms such as style sheets, as is done with SGML
documents.

One application of HyTime, is the Standard Music Description Language
(SMDL). SDML is an architecture for the representation of music information,
either alone, or in conjunction with other media, also supporting multimedia
time sequencing information. Another application is the Metafile for Interactive
Documents (MID). MID is a common interchange structure, based on SGML
and HyTime, that takes data from various authoring systems and structures it
for display on dissimilar presentation systems, with minimal human intervention.

6.6 Trends and Research lIssues

Many changes and proposals are happening, and very rapidly, in particular due
to the advent of the Web. At this point, the reader must be lost in a salad
of acronyms (we were too!), in spite of the fact that we have only mentioned
the most important languages and formats. The most important of these are
included in the Glossary at the end of this book. Some people believe that new

TRENDS AND RESEARCH ISSUES 161
SGML : DSSSL

—

HyTime

]
|
i
Y
XSL
Metalanguages A
B T T T T T TS0 T T N N :
Languages |
TEI Lite HTML CSS
A :
Next RDF MathML SMIL
Generation :
HTML Style sheets

Figure 6.6 Taxonomy of Web languages.

format specifications such as CSS or XML take away the simplicity of HTML,
which is the basis of its success. Only the future will tell. Figure 6.6 illustrates
a taxonomy of the main languages considered. Solid lines indicate instances of a
metalanguage (for example, HTML is an instance of SGML), while dashed lines
indicate derived languages. The main trend is the convergence and integration
of the different efforts, the Web being the main application.

A European alternative to SGML is the Open Document Architecture
(ODA) which is also a standard (ISO 8613 [398]). ODA was designed to share
documents electronically without losing control over the content, structure, and
layout of those documents. ODA defines a logical structure (like SGML), a lay-
out and the content (including vector and raster graphics). An ODA file can also
be formatted, processable, or formatted processable. Formatted files cannot be
edited and have information about content and layout. The other two types can
be edited. Processable files also have logical information in addition to content,
while formatted processable files have everything. ODA is not used very much
nowadays (see also Chapter 11).

Recent developments include:

e An object model is being defined: the document object model (DOM).
DOM will provide an interoperable set of classes and methods to manipu--
late HTML and XML objects from programming languages such as Java.

e Integration between VRML and Dynamic HTML, providing a set of evolv-
ing features and architecture extensions to HTML and Web browsers that
includes cascading style sheets and document object models.

e Integration between the Standard Exchange for Product Data format
(STEP, ISO 10303) and SGML. STEP covers product data from a

broad range of industries, and provides extensive support for modeling,

162 TEXT AND MULTIMEDIA LANGUAGES AND PROPERTIES

automated storage schema generation, life-cycle maintenance, and other
management facilities.

¢ Efforts to convert MARC to SGML by defining a DTD, as well as convert-
ing MARC to XML. This has potential possibilities for enhanced access
and navigation and presentation of MARC record data and the associated
information.

o CGM has become of interest to Web researchers and commercial vendors

for its use on the Internet, by developing a new encoding which can be
parsed by XML.

e Several new proposals have appeared. Among them we can mention SDML
(Signed Document Markup Language), VML (Vector Markup Language),
and PGML (Precision Graphics Markup Language). The latter is based
on the 2D imaging model of Postscript and PDF.

6.7 Bibliographic Discussion

The document model used in the introduction is based on [437]. Specific infor-
mation on Web metadata is given in [487, 753]. Most of the information about
markup languages and related issues is from the World Wide Web Consortium
(see www.w3.org), in particular information on new developments such as DOM
or SMIL. More information on SGML and XML is given by Goldfarb [303, 304].
Additional references in SGML are [369, 756] (in particular, the SGML exam-
ple has been adapted from [24]). There are hundreds of books on HTML. Two
sources for HTML 4.0 are [207, 796]. A book on CSS is [517]. For information on
XML, XSL, and XLL see [795, 799, 798]. For a discussion about the advantages
and disadvantages of XML and related languages see [182, 106, 455, 436]. More
information on multimedia formats can be found in [501]. Formats for images
and compression of textual images are covered in detail in [825].

Chapter 7
Text Operations

with Nivio Ziviani

7.1 Introduction

As discussed in Chapter 2, not all words are equally significant for representing
the semantics of a document. In written language, some words carry more mean-
ing than others. Usually, noun words (or groups of noun words) are the ones
which are most representative of a document content. Therefore, it is usually
considered worthwhile to preprocess the text of the documents in the collection
to determine the terms to be used as index terms. During this preprocessing
phase other useful text operations can be performed such as elimination of stop-
words, stemming (reduction of a word to its grammatical root), the building of a
thesaurus, and compression. Such text operations are discussed in this chapter.

We already know that representing documents by sets of index terms leads
to a rather imprecise representation of the semantics of the documents in the
collection. For instance, a term like ‘the’ has no meaning whatsoever by itself
and might lead to the retrieval of various documents which are unrelated to the
present user query. We say that using the set of all words in a collection to
index its documents generates too much noise for the retrieval task. One way to
reduce this noise is to reduce the set of words which can be used to refer to (i.e.,
to index) documents. Thus, the preprocessing of the documents in the collection
might be viewed simply as a process of controlling the size of the vocabulary (i.e.,
the number of distinct words used as an index terms). It is expected that the
use of a controlled vocabulary leads to an improvement in retrieval performance.

While controlling the size of the vocabulary is a common technique with
commercial systems, it does introduce an additional step in the indexing process
which is frequently not easily perceived by the users. As a result, a common user
might be surprised with some of the documents retrieved and with the absence
of other documents which he expected to see. For instance, he might remember
that a certain document contains the string ‘the house of the lord’ and notice
that such a document is not present among the top 20 documents retrieved in

163

164 TEXT OPERATIONS

response to his query request (because the controlled vocabulary contains neither
‘the’ nor *of’). Thus, it should be clear that, despite a potential improvement
in retrieval performance, text transformations done at preprocessing time might
make it more difficult for the user to interpret the retrieval task. In recognition
of this problem, some search engines in the Web are giving up text operations
entirely and simply indexing all the words in the text. The idea is that, despite
a more noisy index, the retrieval task is simpler (it can be interpreted as a full
text search) and more intuitive to a common user.

Besides document preprocessing, other types of operations on documents
can also be attempted with the aimn of improving retrieval performance. Among
these we distinguish the construction of a thesaurus representing conceptual term
relationships and the clustering of related documents. Thesauri are also covered
in this chapter. The discussion on document clustering is covered in Chapter 5
because it is an operation which might depend on the current user query.

Text normalization and the building of a thesaurus are strategies aimed
at improving the precision of the documents retrieved. However, in the cur-
rent world of very large digital libraries, improving the efficiency (in terms of
time) of the retrieval process has also become quite critical. In fact, Web search
engines are currently more concerned with reducing query response time than
with improving precision and recall figures. The reason is that they depend on
processing a high number of queries per unit of time for economic survival. To re-
duce query response time, one might consider the utilization of text compression
as a promising alternative.

A good compression algorithm is able to reduce the text to 30-35% of its
original size. Thus, compressed text requires less storage space and takes less
time to be transmitted over a communication link. The main disadvantage is
the time spent compressing and decompressing the text. Until recently, it was
generally understood that compression does not provide substantial gains in pro-
cessing time because the extra time spent compressing/decompressing text would
offset any gains in operating with compressed data. Further, the use of compres-
sion makes the overall design and implementation of the information system
more complex. However, modern compression techniques are slowly changing
this understanding towards a more favorable view of the adoption of compres-
sion techniques. By modern compression techniques we mean good compression
and decompression speeds, fast random access without the need to decode the
compressed text from the beginning, and direct searching on the compressed text
without decompressing it, among others.

Besides compression, another operation on text which is becoming more
and more important is encryption. In fact, due to the fast popularization of
services in the Web (including all types of electronic commerce), key (and old)
questions regarding security and privacy have surfaced again. More than ever be-
fore, impersonation and unauthorized access might result in great prejudice and
financial damage to people and organizations. The solution to these problems
is not simple but can benefit from the operation of encrypting text. Discussing
encrypted text is beyvond the scope of this book but an objective and brief in-
troduction to the topic can be found in [501].

DOCUMENT PREPROCESSING 165

In this chapter, we first discuss five preprocessing text operations including
thesauri. Following that, we very briefly summarize the problem of document
clustering (which is discussed in detail in Chapter 5). Finally, a thorough dis-
cussion on the issue of text compression, its modern variations, and its main
implications is provided.

7.2 Document Preprocessing

Document preprocessing is a procedure which can be divided mainly into five
text operations (or transformations):

(1) Lexical analysis of the text with the objective of treating digits, hyphens,
punctuation marks, and the case of letters.

(2) Elimination of stopwords with the objective of filtering out words with very
low discrimination values for retrieval purposes.

(3) Stemming of the remaining words with the objective of removing affixes
(i.e., prefixes and suffixes) and allowing the retrieval of documents con-
taining syntactic variations of query terms (e.g., connect, connecting, con-
nected, etc).

(4) Selection of index terms to determine which words/stems (or groups of
words) will be used as an indexing elements. Usually, the decision on
whether a particular word will be used as an index term is related to the
syntactic nature of the word. In fact, noun words frequently carry more
semantics than adjectives, adverbs, and verbs.

(5) Construction of term categorization structures such as a thesaurus, or ex-
traction of structure directly represented in the text, for allowing the expan-
sion of the original query with related terms (a usually useful procedure).

In the following, each of these phases is discussed in detail. But, before pro-
ceeding, let us take a look at the logical view of the documents which results
after each of the above phases is completed. Figure 1.2 is repeated here for con-
venience as Figure 7.1. As already discussed, by aggregating the preprocessing
phases, we are able to move the logical view of the documents (adopted by the
system) from that of a full text to that of a set of high level indexing terms.

7.2.1 Lexical Analysis of the Text

Lexical analysis is the process of converting a stream of characters (the text of

the documents) into a stream of words (the candidate words to be adopted as

index terms). Thus, one of the major objectives of the lexical analysis phase is

the identification of the words in the text. At first glance, all that seems to be

involved is the recognition of spaces as word separators (in which case, multiple
|

166 TEXT OPERATIONS

/
/
;
//
e
/ . / - \ N
/ o / ,/‘/ e N r "
i ents | L }_;ﬁ ! automatic
S | Socens ; ! noun | i I ! ormanual
i document ’LW | spucing, =l Stopwords For groups __.\\Vsmmmmg " ;
L ~—— Cete . S ~ — ' " indexing
N ; 4
\ — I) e
text + [/.’ ' I S~
structure _____ | structure L et
! recognition !
- — '
' Y 1 1 ']
structure full text Tt - - - - index terms

Figure 7.1 Logical view of a document throughout the various phases of text pre-
processing.

spaces are reduced to one space). However, there is more to it than this. For
instance, the following four particular cases have to be considered with care [263]:
digits, hyphens, punctuation marks, and the case of the letters (lower and upper
case).

Numbers are usually not good index terms because, without a surrounding
context, they are inherently vague. For instance, consider that a user is interested
in documents about the number of deaths due to car accidents between the
years 1910 and 1989. Such a request could be specified as the set of index
terms {deaths, car, accidents, years, 1910, 1989}. However, the presence of the
numbers 1910 and 1989 in the query could lead to the retrieval, for instance, of
a variety of documents which refer to either of these two years. The problem
is that numbers by themselves are just too vague. Thus, in general it is wise
to disregard numbers as index terms. However, we have also to consider that
digits might appear mixed within a word. For instance, ‘510B.C.’ is a clearly
important index term. In this case, it is not clear what rule should be applied.
Furthermore. a sequence of 16 digits identifying a credit card number might be
highly relevant in a given context and, in this case, should be considered as
an index term. A preliminary approach for treating digits in the text might
be to remove all words containing sequences of digits unless specified otherwise
(through regular expressions). Further, an advanced lexical analysis procedure
might perform some date and number normalization to unify formats.

Hyphens pose another difficult decision to the lexical analyzer. Breaking up
hyphenated words might be useful due to inconsistency of usage. For instance,
this allows treating ‘state-of-the-art’ and ‘state of the art’ identically. However,
there are words which include hyphens as an integral part. For instance, gilt-
edge, B-49. etc. Again. the most suitable procedure seems to adopt a general
rule and specify the exceptions on a case by case basis.

Normally, punctuation marks are removed entirely in the process of lexical
analysis. While some punctuation marks are an integral part of the word (for

DOCUMENT PREPROCESSING 167

instance, ‘510B.C.’), removing them does not seem to have an impact in retrieval
performance because the risk of misinterpretation in this case is minimal. In fact,
if the user specifies ‘510B.C’ in his query, removal of the dot both in the query
term and in the documents will not affect retrieval. However, very particular
scenarios might again require the preparation of a list of exceptions. For instance,
if a portion of a program code appears in the text, it might be wise to distinguish
between the variables ‘x.id’ and ‘xid.” In this case, the dot mark should not be
removed.

The case of letters is usually not important for the identification of index
terms. As a result, the lexical analyzer nermally converts all the text to either
lower or upper case. However, once more, very particular scenarios might require
the distinction to be made. For instance, when looking for documents which
describe details about the command language of a Unix-like operating system,
the user might explicitly desire the non-conversion of upper cases because this is
the convention in the operating system. Further, part of the semantics might be
lost due to case conversion. For instance, the words Bank and bank have different
meanings — a fact common to many other pairs of words.

As pointed out by Fox [263], al! these text operations can be implemented
without difficulty. However, careful thought should be given to each one of them
because they might have a profound impact at document retrieval time. This
is particularly worrisome in those situations in which the user finds it difficult
to understand what the indexing strategy is doing. Unfortunately, there is no
clear solution to this problem. As already mentioned, some Web search engines
are opting for avoiding text operations altogether because this simplifies the
interpretation the user has of the retrieval task. Whether this strategy will be
the one of choice in the long term remains to be seen.

7.2.2 Elimination of Stopwords

As discussed in Chapter 2, words which are too frequent among the documents in
the collection are not good discriminators. In fact, a word which occurs in 80%
of the documents in the collection is useless for purposes of retrieval. Such words
are frequently referred to as stopwords and are normally fiitered out as potential
index terms. Articles, prepositions, and conjunctions are natural candidates for
a list of stopwords.

Elimination of stopwords has an additional important benefit. It reduces
the size of the indexing structure considerably. In fact, it is typical to obtain
a compression in the size of the indexing structure (for instance, in the size of
an inverted list, see Chapter 8) of 40% or more solely with the elimination of
stopwords.

Since stopword elimination also provides for compression of the indexing
structure, the list of stopwords might be extended to include words other than
articles, prepositions, and conjunctions. For instance. some verbs, adverbs. and
adjectives could be treated as stopwords. In [275], a list of 425 stopwords is
iliustrated. Programs in C for lexical analysis are also provided.

168 TEXT OPERATIONS

Despite these benefits, elimination of stopwords might reduce recall. For
instance, consider a user who is looking for documents containing the phrase ‘to
be or not to be.” Elimination of stopwords might leave only the term be making it
almost impossible to properly recognize the documents which contain the phrase
specified. This is one additional reason for the adoption of a full text index
(i.e., insert all words in the collection into the inverted file) by some Web search
engines.

7.2.3 Stemming

Frequently, the user specifies a word in a query but only a variant of this word
is present in a relevant document. Plurals, gerund forms, and past tense suffixes
are examples of syntactical variations which prevent a perfect match between
a query word and a respective document word. This problem can be partially
overcome with the substitution of the words by their respective stems.

A stemn is the portion of a word which is left after the removal of its affixes
(i.e., prefixes and suffixes). A typical example of a stem is the word connect which
is the stem for the variants connected, connecting, connection, and connections.
Stems are thought to be useful for improving retrieval performance because they
reduce variants of the same root word to a common concept. Furthermore,
stemming has the secondary effect of reducing the size of the indexing structure
because the number of distinct index terms is reduced.

While the argument supporting stemming seems sensible, there is contro-
versy in the literature about the benefits of stemming for retrieval performance.
In fact, different studies lead to rather conflicting conclusions. Frakes [275] com-
pares eight distinct studies on the potential benefits of stemming. While he
favors the usage of stemiming, the results of the eight experimental studies he
investigated do not allow us to reach a satisfactory conclusion. As a result of
these doubts, many Web search engines do not adopt any stemming algorithm
whatsoever.

Frakes distinguishes four types of stemming strategies: affix removal, table
lookup, successor variety, and n-grams. Table lookup consists simply of looking
for the stem of a word in a table. It is a simple procedure but one which is de-
pendent on data on stems for the whole language. Since such data is not readily
available and might require considerable storage space, this type of stemming
algorithm might not be practical. Successor variety stemming is based on the
determination of morpheme boundaries, uses knowledge from structural linguis-
tics, and is more complex than affix removal stemming algorithms. N-grams
stemming is based on the identification of digrams and trigrams and is more a
term clustering procedure than a stemming one. Affix removal stemming is intu-
itive, simple, and can be implemented efficiently. Thus, in the remainder of this
section we concentrate our discussion on algorithms for affix removal stemming
only.

In affix removal, the most important part is suffix removal because most
variants of a word are generated by the introduction of suffixes (instead of pre-

DOCUMENT PREPROCESSING 169

fixes). While there are three or four well known suffix removal algorithms, the
most popular one is that by Porter because of its simplicity and elegance. De-
spite being simpler, the Porter algorithm yields results comparable to those of
the more sophisticated algorithms.

The Porter algorithm uses a suffix list for suffix stripping. The idea is to
apply a series of rules to the suffixes of the words in the text. For instance, the
rule

s— ¢ (7.1)

is used to convert plural forms into their respective singular forms by substituting
the letter s by nil. Notice that to identify the suffix we must examine the last
Jetters in the word. Furthermore, we look for the longest sequence of letters
which matches the left hand side in a set of rules. Thus, application of the two
following rules

sses — 8S (7.2)

s — ¢

to the word stresses yields the stem stress instead of the stem stresse. By sepa-
rating such rules into five distinct phases, the Porter algorithm is able to provide
effective stemmirg while running fast. A detailed description of the Porter algo-
rithm can be found in the appendix.

7.2.4 Index Terms Selection

If a full text representation of the text is adopted then all words in the text are
used as index terms. The alternative is to adopt a more abstract view in which
not all words are used as index terms. This implies that the set of terms used as
indices must be selected. In the area of bibliographic sciences, such a selection of
index terms is usually done by a specialist. An alternative approach is to select
candidates for index terms automatically.

Distinct automatic approaches for selecting index terms can be used. A
good approach is the identification of noun groups (as done in the Inquery sys-
tem [122]) which we now discuss.

A sentence in natural language text is usually composed of nouns, pro-
nouns, articles, verbs, adjectives, adverbs, and ‘connectives. While the words in
each grammatical class are used with a particular purpose, it can be argued that
most of the semantics is carried by the noun words. Thus, an intuitively promis-
ing strategy for selecting index terms automatically is to use the nouns in the
text. This can be done through the systematic elimination of verbs, adjectives,
adverbs, connectives, articles, and pronouns.

Since it is common to combine two or three nouns in a single component
(e.g., computer science), it makes sense to cluster nouns which appear nearby in
the text into a single indexing component (or concept). Thus, instead of simply

170 TEXT OPERATIONS

using nouns as index terms, we adopt noun groups. A noun group is a set of
nouns whose syntactic distance in the text (measured in terms of number of
words between two nouns) does not, exceed a predefined threshold (for instance,
3). ~
When noun groups are adopted as indexing terms, we obtain a conceptual
logical view of the documents in terms of sets of non-elementary index terms.

7.2.5 Thesauri

The word thesaurus has Greek and Latin origins and is used as a reference to
a treasury of words [261]. In its simplest form, this treasury consists of (1) a
precompiled list of important words in a given domain of knowledge and (2) for
each word in this list, a set of related words. Related words are, in its most
common variation, derived from a synonymity relationship.

In general, however, a thesaurus also involves some normalization of the
vocabulary and includes a structure much more complex than a simple list of
words and their synonyms. For instance, the popular thesaurus published by
Peter Roget [679] also includes phrases which means that concepts more complex
than single words are taken into account. Roget’s thesaurus is of a general nature
(ie, not specific to a certain domain of knowledge) and organizes words and
phrases in categories and subcategories.

An example of an entry in Roget’s thesaurus is as follows:

cowardly adjective

Ignobly lacking in courage: cowardly turncoats.

Syns: chicken (slang), chicken-hearted, craven, dastardly, faint-
hearted, gutless, lily-livered, pusillanimous, unmanly, yellow (slang),
yellow-bellied (slang).

To the adjective cowardly, Roget’s thesaurus associates several synonyms which
compose a thesaurus class. While Roget’s thesaurus is of a generic nature, a
thesaurus can be specific to a certain domain of knowledge. For instance, the
Thesaurus of Engineering and Scientific Terms covers concepts related to engi-
neering and technical terminology.

According to Foskett [261], the main purposes of a thesaurus are basically:
(a) to provide a standard vocabulary (or system of references) for indexing and
searching; (b) to assist users with locating terms for proper query formulation;
and (c) to provide classified hierarchies that allow the broadening and narrowing
of the current query request according to the needs of the user~ In this section,
however, we do not discuss how to use a thesaurus for modifying the user query.
This issue is covered on Chapter 5 which also discusses algorithms for automatic
construction of thesauri.

Notice that the motivation for building a thesaurus is based on the fun-
damental idea of using a controlled vocabulary for the indexing and searching.
A controlled vocabulary presents important advantages such as normalization

DOCUMENT PREPROCESSING 171

of indexing concepts, reduction of noise, identification of indexing terms with a
clear semantic meaning, and retrieval based on concepts rather than on words.
Such advantages are particularly important in specific domains, such as the med-
ical domain for which there is already a large amount of knowledge compiled.
For general domains, however, a well known body of knowledge which can be
associated with the documents in the collection might not exist. The reasons
might be that the document base is new, that it is too large, or that it changes
very dynamically. This is exactly the case with the Web. Thus, it is not clear
how useful a thesaurus is in the context of the Web. Despite that, the success
of the search engine named ‘Yahoo!” (see Chapter 13), which presents the user
with a term classification hierarchy that can be used to reduce the space to be
searched, suggests that thesaurus-based techniques might be quite useful even
in the dynamic world of the Web.

It is still too early to reach a consensus on the advantages of a thesaurus
for the Web. As a result, many search engines simply use all the words in all
the documents as index terms (i.e., there is no notion of using the concepts of a
controlled vocabulary for indexing and searching purposes). Whether thesaurus-
based techniques will flourish in the context of the Web remains to be seen.

The main components of a thesaurus are its index terms, the relationships
among the terms, and a layout design for these term relationships. Index terms
and term relationships are covered below. The layout design for term relation-
ships can be in the form of a list or in the form of a bi-dimensional display. Here,
we consider only the more conventional layout structure based on a list and thus,
do not further discuss the issue of layout of the terms in a thesaurus. A brief
coverage of topics related to this problem can be found in Chapter 10. A more
detailed discussion can be found in [261].

Theasurus Index Terms

The terms are the indezing components of the thesaurus. Usually, a term in
a thesaurus is used to denote a concept which is the basic semantic unit for
conveying ideas. Terms can be individual words, groups of words, or phrases,
but most of them are single words. Further, terms are basically nouns because
nouns are the most concrete part of speech. Terms can also be verbs in gerund
form whenever they are used as nouns (for instance, acting, teaching, etc.).
Whenever a concept cannot be expressed by a single word, a group of
words is used instead. For instance, many concepts are better expressed by a
combination of an adjective with a noun. A typical example is ballistic missiles.
In this case, indexing the compound term directly will yield an entry under
balistic and no entry under missiles which is clearly inadequate. To avoid this
probiem, the compound term is usually modified to have the noun as the first
word. For instance, we can change the compound term to missiles, ballistic.
We notice the use of the plural form missiles instead of the singular form
missile. The reasoning is that a thesaurus represents classes of things and thus
it is natural to prefer the plural form. However, the singular form is used for

172 TEXT OPERATIONS

compound terms which appear normally in the singular such as body temperature.
Deciding between singular and plural is not always a simple matter.

Besides the term itself, frequently it is necessary to complement a thesaurus
entry with a definition or an ezplanation. The reason is the need to specify
the precise meanings of a term in the context of a particular thesaurus. For
instance, the term seal has a meaning in the context of marine animals and a
rather distinct meaning in the context of documents. In these cases, the definition
might be preceded by a context explanation such as seal (marine animals) and
seal (documents) [735].

Thesaurus Term Relationships

The set of terms related to a given thesaurus term is mostly composed of syn-
onyms and near-synonyms. In addition to these, relationships can be induced
by patterns of co-occurrence within documents. Such relationships are usually
of a hierarchical nature and most often indicate broader (represented by BT) or
narrower (represented by NT) related terms. However, the relationship might
also be of a lateral or non-hierarchical nature. In this case, we simply say that
the terms are related (represented by RT).

As discussed in Chapter 5, BT and NT relationships define a classification
hierarchy where the broader term is associated with a class and its related nar-
rower terms are associated with the instances of this class. Further, it might
be that a narrower term is associated with two or more broader terms (which
is not the most common case though). While BT and NT relationships can be
identified in a fully automatic manner (i.e., without assistance from a human
subject), dealing with RT relationships is much harder. One reason seems to
be that RT relationships are dependent on the specific context and particular
needs of the group of users and thus are difficult to identify without knowledge
provided by specialists.

On the Use of Thesauri in IR

As described by Peter Roget [679, 261], a thesaurus is a classification scheme
composed of words and phrases whose organization aims at facilitating the ex-
pression of ideas in written text. Thus, whenever a writer has a difficulty in
finding the proper term to express an idea (a common occurrence in serious
writing), he can use the thesaurus to obtain a better grasp on the fundamental
semantics of terms related to his idea.

In the area of information retrieval, researchers have for many years con-
Jectured and studied the usefulness of a thesaurus for helping with the query
formation process. Whenever a user wants to retrieve a set of documents, he
first builds up a conceptualization of what he is looking for. Such conceptualiza-
tion is what we call his information need. Given the information need, the user
still has to translate it into a query in the language of the IR system. This usually

DOCUMENT CLUSTERING 173

means that a set of index terms has to be selected. However, since the collec-
tion might be vast and the user inexperienced, the selection of such initial terms
might be erroneous and improper (a very common situation with the largely
unknown and highly dynamic collection: of documents and pages which compose
the Web). In this case, reformulating the original query seems to be a promising
course of action. Such a reformulation process usually implies expanding the
original query with related terms. Thus, it seems natural to use a thesaurus for
assisting the user with the search for reiated terms.

Unfortunately, this approach does not work well in general because the
relationships captured in a thesaurus frequently are not valid in the local context
of a given user query. One alternative is to determine thesaurus-like relationships
at query time. Unfortunately, such an alternative is not attractive for Web
search engines which cannot afford to spend a lot of time with the processing of
individual queries. This and many other interesting issues related to the use of
thesaurus-based techniques in IR are covered in Chapter 5.

7.3 Document Clustering

Document clustering is the operation of grouping together similar (or related)
documents in classes. In this regard, document clustering is not really an oper-
ation on the text but an operation on the collection of documents.

The operation of clustering documents is usually of two types: global and
local. In a global clustering strategy, the documents are grouped accordingly
to their occurrence in the whole collection. In a local clustering strategy, the
grouping of documents is affected by the context defined by the current query
and its local set of retrieved documents.

Clustering methods are usually used in IR to transform the original query in
an attempt to better represent the user information need. From this perspective,
clustering is an operation which is more related to the transformation of the user
query than to the transformation of the text of the documents. In this book,
document clustering techniques are treated as query operations and thus, are
covered in Chapter 5 (instead of here).

7.4 Text Compression
7.4.1 Motivation

Text compression is about finding ways to represent the text in fewer bits or
bytes. The amount of space required to store text on computers can be reduced
significantly using compression techniques. Compression methods create a re-
duced representation by identifying and using structures that exist in the text.
From the compressed version, the original text can be reconstructed exactly.
Text compression is becoming an important issue in an information re-
trieval environment. The widespread use of digital libraries, office automation

174 TEXT OPERATIONS

systems, document databases, and the Web has led to an explosion of tex-
tual information available online. In this scenario, text compression appears
as an attractive option for reducing costs associated with space requirements,
input /output (I/0) overhead, and communication delays. The gain obtained
from compressing text is that it requires less storage space, it takes less time
to be transmitted over a communication link, and it takes less time to search
directly the compressed text. The price paid is the time necessary to code and
decode the text.

A major obstacle for storing text in compressed form is the need for IR
systems to access text randomly. To access a given word in a compressed text,
it is usually necessary to decode the entire text from the beginning until the
desired word is reached. It could be argued that a large text could be divided
into blocks that are compressed independently, thus allowing fast random access
to each block. However, efficient compression methods need to process some
text before making compression effective (usually more than 10 kilobytes). The
smaller the blocks, the less effective compression is expected to be.

Our discussion here focuses on text compression methods which are suit-
able for use in an IR environment. For instance, a successful idea aimed at
merging the requirements of compression algorithms and the needs of IR systems
is tc consider that the symbols to be compressed are words and not characters
(character-based compression is the more conventional approach). Words are the
atoms on which most IR systems are built. Moreover; it is now known that much
better compression is achieved by taking words as symbols (instead of charac-
ters). Further, new word-based compression methods allow random access to
words within the compressed text which is a critical issue for an IR system.

Besides the economy of space obtained by a compression method, there are
other important characteristics to be considered such as compression and decom-
pression speed. In some situations, decompression speed is more important than
compression speed. For instance, this is the case with textual databases in which
it is common to compress the text once and to read it many times from disk.

Another important characteristic of a compression method is the possibility
of performing compressed pattern matching, defined as the task of performing
pattern matching in a compressed text without decompressing it. In this case,
sequential searching can be speeded up by compressing the search key rather than
decoding the compressed text being searched. As a consequence, it is possible
to search faster on compressed text because much less text has to be scanned.
Chapter 8 presents efficient methods to deal with searching the compressed text
directly.

When the text collection is large, efficient text retrieval requires specialized
index techniques. A simple and popular indexing structure for text collections
are the inverted files. Inverted files (see Chapter 8 for details) are especially
adequate when the pattern to be searched for is formed by simple words. Since
this is a common type of query (for instance, when searching the Web), inverted
files are widely used for indexing large text collections.

An inverted file is typically composed of (a) a vector containing all the
distinct words in the text collection (which is called the vocabulary) and (b) for

TEXT COMPRESSION 175

each word in the vocabulary, a list of all documents (identified by document
numbers) in which that word occurs. Because each list of document numbers
(within the inverted file) is organized in ascending order, specific compression
methods have been proposed for them, leading to very efficient index compression
schemes. This is important because query processing time is highly related
to index access time. Thus, in this section, we also discuss some of the most
important index compression techniques.

We first introduce basic concepts related to text compression. We then
present some of the most important statistical compression methods, followed
by a brief review of compression methods based on a dictionary. At the end, we
discuss the application of compression to inverted files.

7.4.2 Basic Concepts

There are two general approaches to text compression: statistical and dictionary
based. Statistical methods rely on generating good probability estimates (of ap-
pearance in the text) for each symbol. The more accurate the estimates are,
the better the compression obtained. A symbol here is usually a character, a
text word, or a fixed number of characters. The set of all possible symbols in
the text is called the alphabet. The task of estimating the probability on each
next symbol is called modeling. A model is essentially a collection of probability
distributions, one for each context in which a symbol can be coded. Once these
probabilities are available the symbols are converted into binary digits, a process
called coding. In practice, both the encoder and decoder use the same model.
The decoder interprets the output of the encoder (with reference to the same
model) to find out the original symbol.

There are two well known statistical coding strategies: Huffman coding
and arithmetic coding. The idea of Huffman coding is to assign a fixed-length
bit encoding to each different symbol of the text. Compression is achieved by
assigning a smaller number of bits to symbols with higher probabilities of ap-
pearance. Huffman coding was first proposed in the early 1950s and was the
most important compression method until the late 1970s, when arithmetic cod-
ing made higher compression rates possible.

Arithmetic coding computes the code incrementally, one symbol at a time,
as opposed to the Huffman coding scheme in which each different symbol is
pre-encoded using a fixed-length number of bits. The incremental nature does
not allow decoding a string which starts in the middle of a compressed file. To
decode a symbol in the middle of a file compressed with arithmetic coding, it
is necessary to decode the whole text from the very beginning until the desired
word is reached. This characteristic makes arithmetic coding inadequate for use
in an IR environment.

Dictionary methods substitute a sequence of symbols by a pointer to a
previous occurrence of that sequence. The pointer representations are references
to entries in a dictionary composed of a list of symbols (often called phrases)
that are expected to occur frequently. Pointers to the dictionary entries are

176 TEXT OPERATIONS

chosen so that they need less space than the phrase they replace, thus obtaining
compression. The distinction between modeling and coding does not exist in
dictionary methods and there are no explicit probabilities associated to phrases.
The most well known dictionary methods are represented by a family of methods,
known as the Ziv-Lempel family.

Character-based Huffman methods are typically able to compress English
texts to approximately five bits per character (usually, each uncompressed char-
acter takes 7-8 bits to be represented). More recently, a word-based Huffman
method has been proposed as a better alternative for natural language texts.
This method is able to reduce English texts to just over two bits per charac-
ter. As we will see later on, word-based Huffman coding achieves compression
rates close to the entropy and allows random access to intermediate points in
the compressed text. Ziv-Lempel methods are able to reduce English texts to
fewer than four bits per character. Methods based on arithmetic coding can also
compress English texts to just over two bits per character. However, the price
paid is slower compression and decompression, and the impossibility of randomly
accessing intermediate points in the compressed text.

Before proceeding, let us present an important definition which will be
useful from now on.

Definition Compression ratio is the size of the compressed file as a fraction
of the uncompressed file.

7.4.3 Statistical Methods

In a statistical method, a probability is estimated for each symbol (the modeling
task) and, based on this probability, a code is assigned to each symbol at a time
(the coding task). Shorter codes are assigned to the most likely symbols.

The relationship between probabilities and codes was established by Clau-
de Shannon in his source code theorem [718]. He showed that, in an optimal
encoding scheme, a symbol that is expected to occur with probability p should
be assigned a code of length log, % bits. The number of bits in which a symbol
is best coded represents the information content of the symbol. The average
amount of information per symbol over the whole alphabet is called the entropy
of the probability distribution, and is given by:

E=Y pilog, -

E'is a lower bound on compression , measured in bits per symbol, which applies
to any coding method based on the probability distribution p;. It is important
to note that E is calculated from the probabilities and so is a property of the
model. See Chapter 6 for more details on this topic.

TEXT COMPRESSION 177

Modeling

The basic function of a model is to provide a prebability assignment for the next
symbol to be coded. High compression can be obtained by forming good models
of the text that is to be coded. The probability assignment is explained in the
following section.

Compression models can be adaptive, static, or semi-static. Adaptive mod-
els start with no information about the text and progressively learn about its
statistical distribution as the compression process goes on. Thus, adaptive mod-
els need only one pass over the text and store no additional information apart
from the compressed text. For long enough texts, such models converge to the
true statistical distribution of the text. One major disadvartage, however, is
that decompression of a file has to start from its beginning, since information
on the distribution of the data is stored incrementally inside the file. Adaptive
modeling is a good option for general purpose compression programs, but an
inadequate alternative for full-text retrieval where random access to compressed
patterns is a must. Static models assume an average distribution for all input
texts. The modeling phase is done only once for all texts to be coded in the
future (i.e., somehow a probability distribution is estimated and then used for
all texts to be compressed in the future). These models tend to achieve poor
compression ratios when the data deviates from initial statistical assumptions.
For example, a model adequate for English literary texts will probably perform
poorly for financial texts containing a lot of different numbers, as each number
is relatively rare and so receives long codes.

Semi-static models do not assume any distribution cn the data, but learn
it in a first pass . In a second pass, they compress the data by using a fixed code
derived from the distribution learned from the first pass. At decoding time. in-
formation on the data distribution is sent to the decoder before transmitting the
encoded symbols. The disadvantages of semi-static models are that they must
make two passes over the text and that information on the data distribution
must be stored to be used by the decoder to decompress. In situations where
interactive data communications are involved it may be impractical to make two
passes over the text. However, semi-static models have a crucial advantage in
IR contexts: since the same codes are used at every point in the compressed file,
direct access is possible.

Word-based models take words instead of characters as symbols. Usually,
a word is a contiguous string of characters in the set {A..Z, a..z} separated by
other characters not in the set {A..Z, a..z}. There are many good reasons to
use word-based models in an IR context. First, much better compression rates
are achieved by taking words as symbols because words carry a lot of meaning
in natural languages and, as a result, their distribution is much more related
to the semantic structure of the text than the individual letters. Second, words
are the atoms on which most information retrieval systems are built. Words are
already stored for indexing purposes and so might be used as part of the model
for compression. Third, the word frequencies are also useful in answering queries
involving combinations of words because the best strategy is to start with the

178 TEXT OPERATIONS

least frequent words first.

Since the text is not only composed of words but also of separators, a model
must aiso be chosen for them. There are many different ways to deal with separa-
tors. As words and separators always follow one another, two different alphabets
are usually used: one for words and one for separators. Consider the following
example: each rose, a rose is a rose. In the word-based model, the set of
symbols of the alphabet is {a, each, is, rose}, whose frequencies are 2, 1, 1, and
3, respectively, and the set of separators is {‘,L)’, U}, whose frequencies are 1
and 5, respectively (where U represents a space). Once it is known that the text
starts with a word or a separator, there is confusion about which alphabet to use.

In natural language texts, a word is followed by a single space in most
cases. In the texts of the TREC-3 collection [342] (see Chapter 3), 70-80% of the
separators are single spaces. Another good alternative is to consider the single
space that follows a word as part of the same word. That is, if a word is followed
by a space, we can encode just the word. If not, we can encode the word and
then the following separator. At decoding time, we decode a word and assume
that a space follows unless the next symbol corresponds to a separator. Notice
that now a single alphabet for words and separators (single space excluded) is
used. For instance, in the example above, the single alphabet is {*,0, a, each,
is, rose} and there is no longer an alphabet for separators. As the alphabet
excludes the single space then the words are called spaceless words.

In some situations word-based models for full-text databases have a poten-
tial to generate a great quantity of different codes and care must be exercised to
deal with this fact. For instance, as discussed in the section on lexical analysis
(at the beginning of this chapter), one has to consider whether a sequence of
digits is to be considered as a word. If it is, then a collection which contains
one million documents and includes document numbers as identifiers will gener-
ate one million words composed solely of digits, each one occurring once in the
collection. This can be very inefficient for any kind of compression method avail-
able. One possible good solution is to divide long numbers into shorter ones by
using a null (or implicit) punctuation marker in between. This diminishes the
alphabet size resulting in considerable improvements in the compression ratio
and in the decoding time.

Another important consideration is the size of the alphabet in word-based
schemes. How large is the number of different words in a full-text database? It is
empirically known that the vocabulary V of natural language texts with n words
grows sublinearly. Heaps [352] shows that V = O(n?), where 3 is a constant
dependent on the particular text. For the 2 gigabyte TREC-3 collection [342],
B is between 0.4 and 0.6 which means that the alphabet size grows roughly pro-
portional to the square root of n. Even for this growth of the alphabet, the
generalized Zipf law shows that the probability distribution is skewed so that
the entropy remains constant. This implies that the compression ratio does not
degrade as the text (and hence the number of different symbols) grows. Heaps’
and Zipfs’ laws are explained in Chapter 6.

Finally, it is important to mention that word-based Huffman methods need
large texts to be effective (i.e., they are not adequate to compress and transmit

TEXT COMPRESSION 179

a single Web page over a network). The need to store the vocabulary repre-
sents an important space overhead when the text is small (say, less than 10
megabytes). However, this is not a concern in IR in general as the texts are
large and the vocabulary is needed anyway for other purposes such as indexing
and querying.

Coding

Coding corresponds to the task of obtaining the representation (code) of a symbol
based on a probability distribution given by a model. The main goal of a coder
is to assign short codes to likely symbols and long codes to unlikely ones. As
we have seen in the previous section, the entropy of a probability distribution
is a lower bound on how short the average length of a code can be, and the
quality of a coder is measured in terms of how close to the entropy it is able
to get. Another important consideration is the speed of both the coder and the
decoder. Sometimes it is necessary to sacrifice the compression ratio to reduce
the time to encode and decode the text.

A semi-static Huffman compression method works in two passes over the
text. In a first pass, the modeler determines the probability distribution of the
symbols and builds a coding tree according to this distribution. In a second pass,
each next symbol is encoded according to the coding tree. Adaptive Huffman
compression methods, instead, work in one single pass over the text updating
the coding tree incrementally. The encoding of the symbols in the input text is
also done during this single pass over the text. The main problem of adaptive
Huffman methods is the cost of updating the coding tree as new symbols are read.

As with Huffman-based methods, arithmetic coding methods can also be
based on static, semi-static or adaptive algorithms. The main strength of arith-
metic coding methods is that they can generate codes which are arbitrarily close
to the entropy for any kind of probability distribution. Another strength of arith-
metic coding methods is that they do not need to store a coding tree explicitly.
For adaptive algorithms, this implies that arithmetic coding uses less memory
than Huffman-based coding. For static or semi-static algorithms, the use of
canonical Huffman codes overcomes this memory problem (canonical Huffman
trees are explained later on).

In arithmetic coding, the input text is represented by an interval of real
numbers between 0 and 1. As the size of the input becomes larger, the interval
becomes smaller and the number of bits needed to specify this interval increases.
Compression is achieved because input symbols with higher probabilities reduce
the interval less than symbols with smaller probabilities and hence add fewer
bits to the output code.

Arithmetic coding presents many disadvantages over Huffman coding in
an IR environment. First, arithmetic coding is much slower than Huffman cod-
ing, especially with static and semi-static algorithms. Second. with arithmetic
coding, decompression cannot start in the middle of a compressed file. This con-
trasts with Huffman coding, in which it is possible to index and to decode from

180 TEXT OPERATIONS

any position in the compressed text if static or semi-static algorithms are used.
Third, word-based Huffman coding methods yield compression ratios as good as
arithmetic coding ones.

Consequently, Huffman coding is the method of choice in full-text retrieval,
where both speed and random access are important. Thus, we will focus the
remaining of our discussion on semi-static word-based Huffman coding.

Huffman Coding

Huffman coding is one of the best known compression methods [386]. The idea
is to assign a variable-length encoding in bits to each symbol and encode each
symbol in turn. Compression is achieved by assigning shorter codes to more
frequent symbols. Decompression unigueness is guaranteed because no code is a
prefix of another. A word-based semi-static model and Huffman coding form a
good compression method for text.

Figure 7.2 presents an example of compression using Huffman coding on
words. In this example the set of symbols of the alphabet is {*,L’, a, each, for,
is, rose}, whose frequencies are 1, 2, 1, 1, 1, and 3, respectively. In this case the
alphabet is unique for words and separators. Notice that the separator ‘L’ is not
part of the alphabet because the single space that follows a word is considered
as part of the word. These words are called spaceless words (see more about
spaceless words in Section 7.4.3). The Huffman tree shown in Figure 7.2 is an
example of a binary trie built on binary codes. Tries are explained in Chapter 8.

Decompression is accomplished as follows. The stream of bits in the com-
pressed file is traversed from left to right. The sequence of bits read is used to also
traverse the Huffman compression tree, starting at the root. Whenever a leaf
node is reached, the corresponding word (which constitutes the decompressed
symbol) is printed out and the tree traversal is restarted. Thus, according to the
tree in Figure 7.2, the presence of the code 0110 in the compressed file leads to
the decompressed symbol for.

To build a Huffman tree, it is first necessary to obtain the symbols that
constitute the alphabet and their probability distribution in the text to be com-
pressed. The algorithm for building the tree then operates bottom up and starts

l each]

Original text: for each rose, a rose is a rose

Compressed text: 0110 0100 1 €101 00 1 0111 00 1

Figure 7.2 Huffman coding tree for spaceless words.

TEXT COMPRESSION 181

by creating for each symbol of the alphabet a node containing the symbol and its
probability (or frequency). At this point there is a forest of one-node trees whose
probabilities sum up to 1. Next, the two nodes with the smallest probabilities
become children of a newly created parent node. With this parent node is associ-
ated a probability equal to the sum of the probabilities of the two chosen children.
The operation is repeated ignoring nodes that are already children, until there is
only one node, which becomes the root of the decoding tree. By delaying the pair-
ing of nodes with high probabilities, the algorithm necessarily places them closer
to the root node, making their code smaller. The two branches from every inter-
nal node are consistently labeled 0 and 1 (or 1 and 0). Given s symbols and their
frequencies in the text, the algorithm builds the Huffman tree in O(slog s) time.

The number of Huffman trees which can be built for a given probability
distribution is quite large. This happens because interchanging left and right
subtrees of any internal node results in a different tree whenever the two subtrees
are different in structure, but the weighted average code length is not affected.
Instead of using any kind of tree, the preferred choice for most applications is to
adopt a canonical tree which imposes a particular order to the coding bits.

A Huffman tree is cancnical when the height of the left subtree of any node
is never smaller than that of the right subtree, and all leaves are in increasing
order of probabilities from left to right. Figure 7.3 shows the canonical tree
for the example of Figure 7.2. The deepest leaf at the leftmost position of the
Huffman canonical tree, corresponding to one element with smallest probability,
will contain only zeros, and the following codes will be in increasing order inside
each level. At each change of level we shift left one bit in the counting. The
table in Figure 7.3 shows the canonical codes for the example of Figure 7.2.

A canonical code can be represented by an ordered sequence S of pairs
(wi,y:), 1 < @ < £, where z; represents the number of symbols at level ¢,
y; represents the numerical value of the first code at level 4, and ¢ is the
height of the tree. For our example in Figure 7.3, the ordered sequence is
S = ((1,1),(1,1),(0,00), (4,0)). For instance, the fourth pair (4,0) in S cor-
responds to the fourth level and indicates that there are four nodes at this level
and that to the node most to the left is assigned a code, at this level, with value
0. Since this is the fourth level, a value 0 corresponds to the codeword 0000.

Symbol | Prob. | Old | Can.
code | code
each 1/9 | 0100 | 0000
S 1/9 0101 | 0001
for 1/9 0110 | 0010
is 1/9 | 0111 | 0011
a 2/9 |00 |01
rose 3/9 |1 1

Figure 7.3 Canonical code.

182 TEXT OPERATIONS

(a) Non-optimal tree

254 empty nodes

256 elements 256 elements

=E=

-
254 elements

(b) Optimal byte tree

L I

256 elements 2 elements 254 empty nodes

J L J

Figure 7.4 Example of byte Huffman tree.

One of the properties of canonical codes is that the set of codes having the
same length are the binary representations of consecutive integers. Interpreted
as integers, the 4-bit codes of the table in Figure 7.3 are 0, 1, 2, and 3, the 2-bit
code is 1 and the 1-bit code is also 1. In our example, if the first character read
from the input stream is 1, a codeword has been identified and the corresponding
symbol can be output. If this value is 0, a second bit is appended and the two
bits are again interpreted as an integer and used to index the table and identify
the corresponding symbol. Once we read ‘00’ we know that the code has four
bits and therefore we can read two more bits and use them as an index into the
table. This fact can be exploited to enable efficient encoding and decoding with
small overhead. Moreover, much less memory is required, which is especially
important for large vocabularies.

Byte-Oriented Huffman Code

The original method proposed by Huffman [386] leads naturally to binary coding
trees. In [577], however, it is proposed to build the code assigned to each symbol
as a sequence of whole bytes. As a result, the Huffman tree has degree 256
instead of 2. Typically, the code assigned to each symbol contains between 1
and 5 bytes. For example, a possible code for the word rose could be the 3-byte
code ‘47 131 8.

The construction of byte Huffman trees involves some details which must
be dealt with. Care must be exercised to ensure that the first levels of the tree
have no empty nodes when the code is not binary. Figure 7.4(a) illustrates a
case where a naive extension of the binary Huffman tree construction algorithm
might generate a non-optimal byte tree. In this example the alphabet has 512
symbols, all with the same probability. The root node has 254 empty spaces
that could be occupied by symbols from the second level of the tree, changing
their code lengths from 2 bytes to 1 byte.

A way to ensure that the empty nodes always go to the lowest level of the
tree follows. We calculate beforehand the number of empty nodes that will arise.

TEXT COMPRESSION 183

We then compose these empty nodes with symbols of smallest probabilities (for
moving the empty nodes to the deepest level of the final tree). To accomplish this,
we need only to select a number of symbols equal to 1 + ((v — 256) mod 255),
where v is the total number of symbols (i.e., the size of the vocabulary), for
composing with the empty nodes. For instance, in the example in Figure 7.4(a),
we have that 2 elements must be coupled with 254 empty nodes in the first step
(because, 1 + ((512 — 256) mod 255) = 2). The remaining steps are similar to
the binary Huffman tree construction algorithm.

All techniques for efficient encoding and decoding mentioned previously
can easily be extended to handle word-based byte Huffman coding. Moreover,
no significant decrease of the compression ratio is experienced by using bytes
instead of bits when the symbols are words. Further, decompression of byte
Huffman code is faster than decompression of binary Huffman code. In fact,
compression and decompression are very fast and compression ratios achieved
are better than those of the Ziv-Lempel family [848, 849]. In practice byte
processing is much faster than bit processing because bit shifts and masking
operations are not necessary at decoding time or at searching time.

One important consequence of using byte Huffman coding is the possibility
of performing direct searching on compressed text. The searching algorithm is
explained in Chapter 8. The exact search can be done on the compressed text
directly, using any known sequential pattern matching algorithm. Moreover,
it allows a large number of variations of the exact and approximate compressed
pattern matching problem, such as phrases, ranges, complements, wild cards, and
arbitrary regular expressions. The algorithm is based on a word-oriented shift-
or algorithm and on a fast Boyer-Moore-type filter. For approximate searching
on the compressed text it is eight times faster than an equivalent approximate
searching on the uncompressed text, thanks to the use of the vocabulary by the
algorithm [577, 576]. This technique is not only useful in speeding up sequential
search. It can also be used to improve indexed schemes that combine inverted
files and sequential search, like Glimpse [540].

7.4.4 Dictionary Methods

Dictionary methods achieve compression by replacing groups of consecutive sym-
bols (or phrases) with a pointer to an entry in a dictionary. Thus, the central
decision in the design of a dictionary method is the selection of entries in the dic-
tionary. The choice of phrases can be made by static, semi-adaptive, or adaptive
algorithms. The simplest dictionary schemes use static dictionaries containing
short phrases. Static dictionary encoders are fast as they demand little effort for
achieving a small amount of compression. One example that has been proposed
several times in different forms is the digram coding, where selected pairs of
letters are replaced with codewords. At each step the next two characters are
inspected and verified if they correspond to a digram in the dictionary. If so,
they are coded together and the coding position is shifted by two characters;
otherwise, the single charaeter is represented by its normal code and the coding

184 TEXT OPERATIONS

position is shifted by one character.

The main problem with static dictionary encoders is that the dictionary
might be suitable for one text and unsuitable for another. One way to avoid this
problem is to use a semi-static dictionary scheme, constructing a new dictionary
for each text to be compressed. However, the problem of deciding which phrases
should be put in the dictionary is not an easy task at all. One elegant solution to
this problem is to use an adaptive dictionary scheme, such as the one proposed
in the 1970s by Ziv and Lempel.

The Ziv-Lempel type of adaptive dictionary scheme uses the idea of re-
placing strings of characters with a reference to a previous occurrence of the
string. This approach is effective because most characters can be coded as part
of a string that has occurred earlier in the text. If the pointer to an earlier
occurrence of a string is stored in fewer bits than the string it replaces then
compression is achieved.

Adaptive dictionary methods present some disadvantages over the statis-
tical word-based Huffman method. First, they do not allow decoding to start
in the middle of a compressed file. As a consequence direct access to a position
in the compressed text is not possible, unless the entire text is decoded from
the beginning until the desired position is reached. Second, dictionary schemes
are still popular for their speed and economy of memory, but the new results
in statistical methods make them the method of choice in an IR environment.
Moreover, the improvement of computing technology will soon make statistical
methods feasible for general use, and the interest in dictionary methods will
eventually decrease.

7.4.5 Inverted File Compression

As already discussed, an inverted file is typically composed of (a) a vector con-
taining all the distinct words in the text collection (which is called the vocabulary)
and (b) for each word in the vocabulary, a list of all documents in which that
word occurs. Inverted files are widely used to index large text files. The size
of an inverted file can be reduced by compressing the inverted lists. Because
the list of document numbers within the inverted list is in ascending order, it
can also be considered as a sequence of gaps between document numbers. Since
processing is usually done sequentially starting from the beginning of the list,
the original document numbers can always be recomputed through sums of the
gaps.

By observing that these gaps are small for frequent words and large for
infrequent words, compression can be obtained by encoding small values with
shorter codes. One possible coding scheme for this case is the unary code, in
which an integer z is coded as (z — 1) one bits followed by a zero bit, so the code
for the integer 3 is 110. The second column of Table 7.1 shows unary codes for
integers between 1 and 10.

Elias [235] presented two other variable-length coding schemes for integers.
One is Elias-y code, which represents the number z by a concatenation of two

TEXT COMPRESSION

Gap z Unary Elias-y Elias-§ Golomb

b=3

1 0 0 0 00

2 10 100 1000 010

3 110 101 1001 011

4 1110 11000 10100 100

a 11110 11001 10101 1010

6 111110 11010 10110 1011

7 1111110 11011 10111 1100

8 11111110 1110000 11000000 11010

9 111111110 1110001 11000001 11011

10 1111111110 1110010 11000010 11100

185

Table 7.1 Example codes for integers.

parts: (1) a unary code for 1+|log z] and (2) a code of |log z] bits that represents
the value of z — 2U1°2=) in binary. For z = 5, we have that 1+ |logz| = 3 and
that = — 218} = 1. Thus, the Elias-y code for z = 5 is generated by combining
the unary code for 3 (code 110) with the 2-bits binary number for 1 (code 01)
which yields the codeword 11001. Other examples of Elias-y codes are shown in
Table 7.1.

The other coding scheme introduced by Elias is the Elias-d code, which
represents the prefix indicating the number of binary bits by the Elias-y code
rather than the unary code. For z = 5, the first part is then 101 instead of 110.
Thus, the Elias-6 codeword for z = 5 is 10101. In general, the Elias-é code for
an arbitrary integer = requires 1 + 2|loglog2z| + |logx] bits. Table 7.1 shows
other examples of Elias-§ codes. In general, for small values of x the Elias-y
codes are shorter than the Elias-6 codes. However, in the limit, as z becomes
large, the situation is reversed.

Golomb [307] presented another run-length coding method for positive in-
tegers. The Golomb code is very effective when the probability distribution is
geometric. With inverted files, the likelihood of a gap being of size x can be com-
puted as the probability of having z — 1 non-occurrences (within consecutively
numbered documents) of that particular word followed by one occurrence. If a
word occurs within a document with a probability p, the probability of a gap of
size z is then

Priz] = (1-p)*7'p

which is the geometric distribution. In this case, the model is parameterized and
makes use of the actual density of pointers in the inverted file. Let N be the
number of documents in the system and V be the size of the vocabulary. Then,
the probability p that any randomly selected document contains any randomly

186 TEXT OPERATIONS

chosen term can be estimated as

__ number of pointers
- NxV

where the number of pointers represent the ‘size’ of the index.

The Golomb method works as follows. For some parameter b, a gap z > 0
is coded as g + 1 in unary, where ¢ = |(z —1)/b], followed by r = (x —1) —g x b
coded in binary, requiring either |logb| or [logb] bits. That is, if r < 2lleg?]-1
then the number coded in binary requires |log b] bits, otherwise it requires [log b]
bits where the first bit is 1 and the remaining bits assume the value r — 2llog5]-1
coded in |logb] binary digits. For example, with b = 3 there are three possible
remainders, and those are coded as 0, 10, and 11, for r = 0, r = 1, and r = 2,
respectively. Similarly, for b = 5 there are five possible remainders r, 0 through
4, and these are assigned codes 00, 01, 100, 101, and 110. Then, if the value
z = 9 is to be coded relative to b = 3, calculation yields ¢ = 2 and r = 2, because
9—1 = 2x3+2. Thus, the encoding is 110 followed by 11. Relative to b = 5, the
values calculated are ¢ = 1 and r = 1, resulting in a code of 10 followed by 101.

To operate with the Golomb compression method, it is first necessary to
establish the parameter b for each term. For gap compression, an appropriate
value is b ~ 0.69(N/f;), where N is the total number of documents and f; is
the number of documents that contain term ¢. Witten, Moffat and Bell [825]
present a detailed study of different text collections. For all of their practical
work on compression of inverted lists, they use Golomb code for the list of gaps.
In this case Golomb code gives better compression than either Elias-y or Elias-4.
However, it has the disadvantage of requiring two passes to be generated, since
it requires knowledge of f;, the number of documents containing term t¢.

Moffat and Bell [572] show that the index for the 2 gigabytes TREC-3
collection, which contains 162,187,989 pointers and 894,406 distinct terms, when
coded with Golomb code, occupies 132 megabytes. Considering the average
number of bits per pointer, they obtained 5.73, 6.19, and 6.43 using Golomb,
Elias-4, and Elias-v, respectively.

7.5 Comparing Text Compression Techniques

Table 7.2 presents a comparison between arithmetic coding, character-based
Huffman coding, word-based Huffman coding, and Ziv-Lempel coding, consider-
ing the aspects of compression ratio, compression speed, decompression speed,
memory space overhead, compressed pattern matching capability, and random
access capability.

One important objective of any compression method is to be able to obtain
good compression ratios. It seems that two bits per character (or 25% compres-
sion ratio) is a very good result for natural language texts. Thus, ‘very good’ in
the context of Table 7.2 means a compression ratio under 30%, ‘good’ means a
compression ratio between 30% and 45%, and ‘poor’ means a compression ratio
over 45%.

COMPARING TEXT COMPRESSION TECHNIQUES 187

Character Word
Arithmetic ~ Huffman Huffman Ziv-Lempel

Compression ratio very good poor very good good
Compression speed slow fast fast very fast
Decompression speed slow fast very fast very fast
Memory space low low high moderate
Compressed pat. matching no yes ves yes
Random access no yes yes no

Table 7.2 Comparison of the main techniques.

Two other important characteristics of a compression method are com-
pression and decompression speeds. Measuring the speed of various compression
methods is difficult because it depends on the implementation details of each
method, the compiler used, the computer architecture of the machine used to
run the program, and so on. Considering compression speed, the LZ78 methods
(Unix compress is an example) are among the fastest. Considering decompres-
sion speed, the LZ77 methods (gzip is an example) from the Ziv-Lempel are
among the fastest.

For statistical methods (e.g., arithmetic and semi-static Huffman) the
compression time includes the cost of the first pass during which the probability
distribution of the symbols are obtained. With two passes over the text to com-
press, the Huffman-based methods are slower than some Ziv-Lempel methods,
but not very far behind. On the other hand, arithmetic methods are slower than
Huffman methods because of the complexity of arithmetic coding compared with
canonical Huffman coding. Considering decompression speed, word-based Huff-
man methods are as fast as Ziv-Lempel methods, while character-based Huffman
methods are slower than word-based Huffman methods. Again, the complexity of
arithmetic coding make them slower than Huffman coding during decompression.

Ali Ziv-Lempel compression methods require a moderate amount of mem-
ory during encoding and decoding to store tables containing previously occurring
strings. In general, more detailed tables that require more memory for storage
yield better compression. Statistical methods store the probability distribution
of the symbols of the text during the modeling phase, and the model during both
compression and decompression phases. Consequently, the amount of memory
depends on the size of the vocabulary of the text in each case, which is high for
word-based models and low for character-based models. .

In an IR environment, two important considerations are whether the com-
pression method allows efficient random access and direct searching on com-
pressed text (or compressed pattern matching). Huffman methods allow random
access and decompression can start anywhere in the middle of a compressed
file, while arithmetic coding and Ziv-Lempel methods cannot. More recently,
practical, efficient, and flexible direct searching methods on compressed texts
have been discovered for word-based Huffman compression [575. 576, 577)].

188 TEXT OPERATIONS

Direct searching has also been proposed for Ziv-Lempel methods, but only on a
theoretical basis, with no implementation of the algorithms [250, 19].

More recently, Navarro and Raffinot [592] presented some preliminary
implementations of algorithms to search directly Ziv-Lempel compressed text.
Their algorithms are twice as fast as decompressing and searching, but slower
than searching the decompressed text. They are also able to extract data from
the middle of the compressed text without necessarily decompressing everything,
and although some previous text has to be decompressed (i.e., it is not really
‘direct access’), the amount of work is proportional to the size of the text to be
decompressed (and not to its position in the compressed text).

7.6 Trends and Research Issues

In this chapter we covered various text transformation techniques which we call
simply text operations. We first discussed five distinct text operations for pre-
processing a document text and generating a set of index terms for searching and
querying purposes. These five text operations were here called lexical analysis,
elimination of stopwords, stemming, selection of index terms, and thesauri. The
first four are directly related to the generation of a good set of index terms. The
fifth, construction of a thesaurus, is more related to the building of categorization
hierarchies which are used for capturing term relationships. These relationships
can then be used for expanding the user query (manually or automatically) to-
wards a formulation which better suits the user information need.

Nowadays, there is controversy regarding the potential improvements to
retrieval performance generated by stopwords elimination, stemming, and index
terms selection. In fact, there is no conclusive evidence that such text operations
yield consistent improvements in retrieval performance. As a result, modern
retrieval systems might not use these text operations at all. A good example of
this trend is the fact that some Web search engines index all the words in the
text regardless of their syntactic nature or their role in the text.

Furthermore, it is also not clear that automatic query expansion using
thesaurus-based techniques can yield improved retrieval performance. The same
cannot be said of the use of a thesaurus to directly assist the user with the query
formation process. In fact, the success of the ‘Yahoo!’ Web search engine, which
uses a term categorization hierarchy to show term relationships to the user, is an
indication that thesaurus-based techniques might be quite useful with the highly
interactive interfaces being developed for modern digital library systems.

We also briefly discussed the operation of clustering. Since clustering is
more an operation of grouping documents than an operation of text transfor-
mation, we did not cover it thoroughly here. For a more complete coverage of
clustering the reader is referred to Chapter 5.

One text operation rather distinct from the previous ones is compression.
While the previous text operations aim, in one form or another, at improving
the quality of the answer set, the operation of compressing text aims at reducing
space, I/O, communication costs, and searching faster in the compressed text
(exactly or approximately). In fact, the gain obtained from compressing text is

BIBLIOGRAPHIC DISCUSSION 189

that it requires less storage space, takes less time to be transmitted, and permits
efficient direct and sequential access to compressed text.

For effective operation in an IR environment, a compression method should
satisfy the following requirements: good compression ratio, fast coding, fast de-
coding, fast random access without the need to decode from the beginning, and
direct searching without the need to decompress the compressed text. A good
compression ratio saves space in secondary storage and reduces communication
costs. Fast coding reduces processing overhead due to the introduction of com-
pression into the system. Sometimes, fast decoding is more important than fast
coding, as in documentation systems in which a document is compressed once
and decompressed many times from disk. Fast random access allows efficient pro-
cessing of multiple queries submitted by the users of the information system. We
compared various compression schemes using these requirements as parameters.
We have seen that it is much faster to search sequentially a text compressed by
a word-based byte Huffman encoding scheme than to search the uncompressed
version of the text. Our discussion suggests that word-based byte Huffman com-
pression (which has been introduced only very recently) shows great promise as
an effective compression scheme for modern information retrieval systems.

We also discussed the application of compression to index structures such
as inverted files. Inverted files are composed of several inverted lists which are
themselves formed by document numbers organized in ascending order. By cod-
ing the difference between these document numbers, efficient compression can
be attained.

The main trends in text compression today are the use of semi-static word-
based modeling and Huffman coding. The new results in statistical methods,
such as byte-Huffman coding, suggest that they are preferable methods for use
in an IR environment. Further, with the possibility now of directly searching
the compressed text, and the recent work [790] of Vo and Moffat on efficient
manipulation of compressed indices, the trend is towards maintaining both the
index and the text compressed at all times, unless the user wants to visualize
the uncompressed text.

7.7 Bibliographic Discussion

Our discussion on lexical analysis and elimination of stopwords is based on
the work of Fox [263]. For stemming, we based our discussion on the work
of Frakes [274]. The Porter stemming algorithm detailed in the appendix is
from [648], while our coverage of thesauri is based on the work of Foskett [261].
Here, however, we did not cover automatic generation of thesauri. Such discus-
sion can be found in Chapter 5 and in {739, 735]. Additional discussion on the
usefulness of thesauri is presented in [419, 735].

Regarding text compression, several books are available. Most of the topics
discussed here are covered in more detail by Witten, Moffat and Bell [825]. They
also present implementations of text compression methods, such as Huffman and
arithmetic coding. as part of a fully operational retrieval system written in ANSI

190 TEXT OPERATIONS

C. Bell, Cleary and Witten [78] cover statistical and dictionary methods, laying
particular stress on adaptive methods as well as theoretical aspects of compres-
sion, with estimates on the entropy of several natural languages. Storer [747]
covers the main compression techniques, with emphasis on dictionary methods.

Huffman coding was originally presented in [386]. Adaptive versions of
Huffman coding appear in {291, 446, 789]. Word-based compression is consid-
ered in [81, 571, 377, 77]. Bounds on the inefficiency of Huffman coding have
been presented by [291]. Canonical codes were first presented in [713]. Many
properties of the canonical codes are mentioned in [374]. Byte Huffman coding
was proposed in [577]. Sequential searching on byte Huffman compressed text is
described in (577, 576].

Sequential searching on Ziv-Lempel compressed data is presented in (250,
19]. More recently, implementations of sequential searching on Ziv-Lempel com-
pressed text are presented in [593]. One of the first papers on arithmetic coding
is in [675]. Other references are [823, 78].

A variety of compression methods for inverted lists are studied in [573]
The most effective compression methods for inverted lists are based on the
sequence of gaps between document numbers, as considered in [77] and in [572].
Their results are based on run-length encodings proposed by Elias [235] and
Golomb [307]. A comprehensive study of inverted file compression can be found
in [825]. More recently Vo and Moffat [790] have presented algorithms to process
the index with no need to fully decode the compressed index.

Chapter 8
Indexing and Searching

with Gonzalo Navarro

8.1 Introduction

Chapter 4 describes the query operations that can be performed on text
databases. In this chapter we cover the main techniques we need to implement
those query operations.

We first concentrate on searching queries composed of words and on report-
ing the documents where they are found. The number of occurrences of a query
in each document and even its exact positions in the text may also be required.
Following that, we concentrate on algorithms dealing with Boolean operations.
We then consider sequential search algorithms and pattern matching. Finally,
we consider structured text and compression techniques.

An obvious option in searching for a basic query is to scan the text se-
quentially. Sequential or orline text searching involves finding the occurrences
of a pattern in a text when the text is not preprocessed. Online searching is
appropriate when the text is small (i.e., a few megabytes), and it is the only
choice if the text collection is very volatile (i.e., undergoes modifications very
frequently) or the index space overhead cannot be afforded.

A second option is to build data structures over the text (called indices)
to speed up the search. It is worthwhile building and maintaining an index when
the text collection is large and semi-static. Semi-static collections can be up-
dated at reasonably regular intervals (e.g., daily) but they are not deemed to
support thousands of insertions of single words per second, say. This is the case
for most real text databases, not only dictionaries or other slow growing literary
works. For instance, it is the case for Web search engines or journal archives.

Nowadays, the most successful techniques for medium size databases (say
up to 200Mb) combine online and indexed searching.

We cover three main indexing techniques: inverted files, suffix arrays, and
signature files. Keyword-based search is discussed first. We emphasize inverted
files, which are currently the best choice for most applications. Suffix trees

191

192 INDEXING AND SEARCHING

and arrays are faster for phrase searches and other less common queries, but
are harder to build and maintain. Finally, signature files were popular in the
1980s, but nowadays inverted files outperform them. For all the structures we
pay attention not only to their search cost and space overhead, but also to the
cost of building and updating them.

We assume that the reader is familiar with basic data structures, such as
sorted arrays, binary search trees, B-trees, hash tables, and tries. Since tries are
heavily used we give a brief and simplified reminder here. Tries, or digital search
trees, are multiway trees that store sets of strings and are able to retrieve any
string in time proportional to its length (independent of the number of strings
stored). A special character is added to the end of the string to ensure that no
string is a prefix of another. Every edge of the tree is labeled with a letter. To
search a string in a trie, one starts at the root and scans the string character-
wise, descending by the appropriate edge of the trie. This continues until a leaf
is found (which represents the searched string) or the appropriate edge to follow
does not exist at some point (i.e., the string is not in the set). See Figure 8.3
for an example of a text and a trie built on its words.

Although an index must be built prior to searching it, we present these tasks
in the reverse order. We think that understanding first how a data structure is
used makes it clear how it is organized, and therefore eases the understanding
of the construction algorithm, which is usually more complex.

Throughout this chapter we make the following assumptions. We call n
the size of the text database. Whenever a pattern is searched, we assume that
it is of length m, which is much smaller than n. We call M the amount of main
memory available. We assume that the modifications which a text database
undergoes are additions, deletions, and replacements (which are normally made
by a deletion plus an addition) of pieces of text of size n’ < n.

We give experimental measures for many algorithms to give the reader a
grasp of the real times involved. To do this we use a reference architecture
throughout the chapter, which is representative of the power of today’s comput-
ers. We use a 32-bit Sun UltraSparc-1 of 167 MHz with 64 Mb of RAM, running
Solaris. The code is written in C and compiled with all optimization options.
For the text data, we use collections from TREC-2, specifically WSJ, DOE, FR,
ZIFF and AP. These are described in more detail in Chapter 3.

8.2 Inverted Files

An inverted file (or inverted index) is a word-oriented mechanism for indexing a
text collection in order to speed up the searching task. The inverted file structure
is composed of two elements: the vocabulary and the occurrences. The vocabulary
is the set of all different words in the text. For each such word a list of all the text
positions where the word appears is stored. The set of all those lists is called the
‘occurrences’ (Figure 8.1 shows an example). These positions can refer to words
or characters. Word positions (i.e., position i refers to the i-th word) simplify

INVERTED FILES 193
1 6 9 11 17 19 24 28 33 40 46 50 55 60

Fhis is a text. A text has many words. Words are made from letters.

Text
y Occ
letters 60...
made 50...
many 28...
text 11,19... Inverted Index
words 33, 40...

Figure 8.1 A sample text and an inverted index built on it. The words are converted
to lower-case and some are not indexed. The occurrences point to character positions
in the text.

phrase and proximity queries, while character positions (i.e., the position ¢ is the
i-th character) facilitate direct access to the matching text positions.

Some authors make the distinction between inverted files and inverted lists.
In an inverted file, each element of a list points to a document or file name, while
inverted lists match our definition. We prefer not to make such a distinction
because, as we will see later, this is a matter of the addressing granularity,
which can range from text positions to logical blocks.

The space required for the vocabulary is rather small. According to Heaps’
law (see Chapter 6) the vocabulary grows as O(n?), where (3 is a constant
between 0 and 1 dependent on the text, being between 0.4 and 0.6 in practice.
For instance, for 1 Gb of the TREC-2 collection the vocabulary has a size of
only 5 Mb. This may be further reduced by stemming and other normalization
techniques as described in Chapter 7.

The occurrences demand much more space. Since each word appearing
in the text is referenced once in that structure, the extra space is O(n). Even
omitting stopwords (which is the default practice when words are indexed), in
practice the space overhead of the occurrences is between 30% and 40% of the
text size.

To reduce space requirements, a technique called block addressing is used.
The text is divided in blocks, and the occurrences point to the blocks where
the word appears (instead of the exact positions). The classical indices which
point to the exact occurrences are called ‘full inverted indices.” By using block
addressing not only can the pointers be smaller because there are fewer blocks
than positions, but also all the occurrences of a word inside a single block are
collapsed to one reference (see Figure 8.2). Indices of only 5% overhead over the
text size are obtained with this technique. The price to pay is that, if the exact
occurrence positions are required (for instance, for a proximity query), then an
online search over the qualifying blocks has to be performed. For instance, block
addressing indices with 256 blocks stop working well with texts of 200 Mb.

Table 8.1 presents the projected space taken by inverted indices for texts of

194 INDEXING AND SEARCHING
Block 1 Block 2 Biock 3 Block 4

This is a text.| A text has many |words. Words arelmade from letters.

Text
y

letters 4.

made 4.

man 2.

y inverted Index

toxt 1,2..

words 3

Figure 8.2 The sample text split into four blocks, and an inverted index using block
addressing built on it. The occurrences denote block numbers. Notice that both
occurrences of ‘words’ collapsed into one.

different sizes, with and without the use of stopwords. The full inversion stands
for inverting all the words and storing their exact positions, using four bytes per
pointer. The document addressing index assumes that we point to documents
which are of size 10 Kb (and the necessary number of bytes per pointer, i.e.
one, two, and three bytes, depending on text size). The block addressing index
assumes that we use 256 or 64K blocks (one or two bytes per pointer) indepen-
dently of the text size. The space taken by the pointers can be significantly
reduced by using compression. We assume that 45% of all the words are stop-
words, and that there is one non-stopword each 11.5 characters. Qur estimation
for the vocabulary is based on Heaps’ law with parameters V = 30n0-5. All these
decisions were taken according to our experience and experimentally validated.

The blocks can be of fixed size (imposing a logical block structure over
the text database) or they can be defined using the natural division of the text
collection into files, documents, Web pages, or others. The division into blocks
of fixed size improves efficiency at retrieval time, i.e. the more variance in the
block sizes, the more amount of text sequentially traversed on average. This is
because larger blocks match queries more frequently and are more expensive to
traverse.

Alternatively, the division using natural cuts may eliminate the need for
online traversal. For example, if one block per retrieval unit is used and the
exact match positions are not required, there is no need to traverse the text for
single-word queries, since it is enough to know which retrieval units to report.
But if, on the other hand, many retrieval units are packed into a single block,
the block has to be traversed to determine which units to retrieve.

It is important to notice that in order to use block addressing, the text
must be readily available at search time. This is not the case for remote text (as
in Web search engines), or if the text is in a CD-ROM that has to be mounted,
for instance. Some restricted queries not needing exact positions can still be
solved if the blocks are retrieval units.

